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S1. Synthesis of Bi,S; and NH,-MIL-125(Ti)

Bi,S; was synthesized according to the previous report.! In typical, 1.82 g
Bi(NO3)-3H,0 was first dissolved into 25 mL ethylene glycol (EG) under nitrogen
bubbling and obtained solution A. Meanwhile, 1.35 g Na,S was dissolved in a mixed
solvent of 10 mL EG and 20 mL deionized water under stirring for 15 min, which
denoted as solution B. Then solution B was added dropwise to solution A under
magnetic stirring, along with plenty of black suspended matter. Subsequently, 1.92 g
carbamide and 20 mL deionized water were added to the mixture and stirred for
another 30 min. The mixed solution was then transferred into a Teflon-lined stainless
steel autoclave and maintained at 180 °C for 24 h. After cooling to room temperature,
the precipitate was collected by vacuum filtration, and washed successively by
ethanol and water for several times. Finally, the obtained products were dried under
vacuum at 60 °C for obtaining the Bi,S;.

NH,-MIL-125(Ti) was synthesized using a solvothermal method.> 3 The H,BDC-
NH; (2.2 g), DMF (36 mL), methanol (4.0 mL), and Ti(OC4Hy), (2.4 mL) were mixed
and dispersed with magnetic stirring for 5 mins to form a homogeneous solution.
Then, the solution was poured into a Teflon-lined stainless-steel autoclave for 48 h at
150 °C. After cooling to room temperature, the obtained precipitate was separated by
centrifugation, following by being washed repeatedly with DMF and methanol and

dried at 60 °C overnight. As such, the NH,-MIL-125(T1) was obtained.
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S2. XPS spectra of the samples
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Fig. S1. XPS survey spectra of (i) NH,-MIL-125(Ti), (i1) Bi,Ss, (iii) Bi;S;@NM-10,

(iv) Bi;S;@NM-50, and (v) Bi,S3@NM-100 nanocomposites.

Table S1. Atomic percentage of NH,-MIL-125(Ti), Bi,S;, and Bi,S;@NM

nanocomposites.
Atomic percentage
Samples
Cls N1s O1s Ti2p Bi4f S2p
NH,-MIL-125(Ti) 5539 733 3037 691 - -

Bi,S; 9.75 - - - 6.1 84.15
Bi,S;@NM-10 62.33 1056 2274 4.16 0.04 0.18
Bi,S;@NM-50 61.60 1034 2293 446 0.06 0.61
Bi,S;@NM-100 59.89 998 23.11 486 0.19 1.98
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Fig. S2. (a) Ti 2p, (b) C 1s, (c) N s, and (d) O 1s high resolution XPS spectra of

NH,-MIL-125(Ti).
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Fig. S3. (a) Bi 4f'and S 2p, and (b) S 2s high resolution XPS spectra of Bi,S;.
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Fig. S4. N 1s and O ls high resolution XPS spectra of (a) Bi,S;@NM-10, (b)

Bi,S;@NM-50, and (¢) Bi,S;@NM-100 nanocomposites.
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S3. Surface morphologies of the NH,-MIL-125(Ti) and Bi,S; samples

Fig. SS. Low- and high-magnification FE-SEM images of (a, b) NH,-MIL-125(T1)

and (c, d) Bi,Ss.
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Fig. S6. (a, b) TEM images of NH,-MIL-125(Ti) and (c, d) TEM and HR-TEM

images of Bi,S; (the inset in (d) is the corresponding SAED pattern).



S4. Nitrogen adsorption-desorption isotherms of the samples

To evaluate the pore structures and specific surface areas, N, adsorption—desorption
measurements of all samples were performed, as shown in Figure S7. The NH,-MIL-
125(T1) sample illustrated type I isotherms at 77 K with no hysteresis, indicating its
typical microporous structure. The Bi,S; exhibited type IV isotherms with a hysteresis
loop in the higher relative pressure (P/P,, 0.9—1.0) range, which implies the presence
of capillary condensation in the mesoporous and macroporous. N, adsorption-
desorption isotherms of Bi,S;@NM samples exhibit hybrid type I/IV isotherms with
hysteresis loop at P/P, = 0.45-1.0, confirming the presence of both of micropores and
mesopores.* It illustrated that the specific surface area of NH,-MIL-125(Ti),
Bi,S;@NM-10, Bi,S;@NM-50, and Bi,S;@NM-100 were determined to be 622.9,
485.7, 560.9, and 416.7 m?-g~! using Brunauer—-Emmett—Teller (BET) method. The
pore size distributions were obtained from the Barrett—Joyner—Halenda (BJH) method
and Horvath-Kawazoe (HK) method. An extremely little specific surface area was
observed for Bi,S;, only 12.5 m?-g~!, with a wide distribution centered around 40-65
nm (Figure S7b). The NH,-MIL-125(Ti) and Bi,S;@NM samples (Figure S7c-d)
revealed narrow distributions centered at 0.5—1 nm and narrow distributions ranged

from 3—5 nm, which were associated with the microporous and mesoporous structure.
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Fig. S7. (a) Nitrogen adsorption—desorption isotherms of NH,-MIL-125(Ti), Bi,Ss,
and Bi,S;@NM nanocomposites. (b) Barrett-Joyner-Halenda (BJH) mesopore size
distributions of Bi,S;. (c) Horvath-Kawazoe (HK) micropore size distributions and (d)

Barrett-Joyner-Halenda (BJH) mesopore size distributions of NH,-MIL-125(T1) and

Bi,S; @NM nanocomposites.

SS. Photocatalytic activity of the samples
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Fig. S8. UV-vis absorption spectra for reduction of Cr (VI) with (a) blank, (b) NH,-
MIL-125(Ti), (c) Bi,S;, (d) Bi,S;@NM-10, (e) Bi,S;@NM-50, and (f) Bi,S;@NM-
100 catalysts. (g) Reaction rate constant (k) of various samples (initial concentration

of Cr(VI): 10 mg-L!, photocatalyst dosage: 100 mg-L-!, pH = 7.0).
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Fig. S9. UV-vis absorption spectra for degradation of RhB with (a) blank, (b) NH,-
MIL-125(T1), (C) Bleg, (d) Ble3@NM—10, (e) Bleg@NM-SO, and (f) BIZS3@NM‘
100 catalysts. (g) reaction rate constant (k) of various samples (initial concentration of

RhB: 20 mg-L-!, photocatalyst dosage: 100 mg-L-!, pH = 7.0).
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Fig. S10. Photocatalytic degradation of RhB with and without of Cr(VI) using the
Bi,S;@NM-100 sample (initial concentration of RhB: 5 mg-L!, Cr(VI): 10 mg-L-,

photocatalyst dosage: 200 mg-L-!, pH = 3.0).

S6. The reusability and stability of the photocatalyst
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Fig. S11. (a) FT-IR spectra, (b) XRD patterns, (c) XPS survey spectra and of the (i)
pristine Bi,S;@NM-100, and recycled sample after (i1) Cr(VI) reduction and (iii) RhB
degradation. (d) High-resolution XPS spectrum of Cr 2p for the recycled Bi,S;@NM-

100 after photocatalytic reduction of Cr(VI).




Fig. S12. FE-SEM images of the recycled Bi,S;@NM-100 after (a) Cr(VI) reduction
and (b) RhB degradation.

S7. Mott—Schottky analysis
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Fig. S13. Mott-Schottky plots of (a) NH,-MIL-125(T1i), (b) Bi,S3, (¢) Bi,S;@NM-10,
(d) BiS;@NM-50, and (e) Bi;S;@NM-100 nanocomposites measured in 0.5 M

Na,SO,4 aqueous solution at a frequency of 100 Hz in the dark.

Table S2. The values of flat-band, conduction band, valence band, and E, for various
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samples.

Conduction
Flat band Flat band Valence
band E,
Samples (V vs. (V vs. band (V vs.
(V vs. (eV)
Ag/AgCl) NHE) NHE)
NHE)
NH,-MIL-
-0.70 -0.49 -0.59 2.09 2.68
125(Ti)
Bi,S; -0.07 0.14 0.04 1.36 1.32
B1,S;@NM-10 -0.57 -0.36 -0.46 2.20 2.66
Bi,S;@NM-50 -0.43 -0.22 -0.32 2.32 2.64
Bi1,S;@NM-100 -0.29 -0.08 -0.18 2.41 2.59
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