Supporting information for

Facile Synthesis of Two-dimensional Layered Ni-MOF Electrode

Material for High Performance Supercapacitors

Cunrong Zhang, a Qi Zhang, a Kai Zhang, Zhenyu Xiao, Yu Yang, Lei Wang

Fig S1 TG patterns of the as-synthesized Ni-MOF.

Figure S2 PXRD patterns of different materials obtained from Ni-MOF.

Table S1 The specific capacitance of different materials in three-electrode system at

Material	Calcination	Specific BET surface	Specific Capacitance
	temperature (°C)	area (m ² g ⁻¹)	(F g ⁻¹)
Ni-MOF	_	436.06	1688.9
Compound 1	400	123	198.7
Compound 2	500	98	82.0
Compound 3	600	60	77.7

current density of 2 A g⁻¹.

Figure S3 (a and b) The SEM of the 2D Ni-MOF.

Figure S4 (a and b) TEM images of the Ni-MOF after 5000 charge-discharge.

Figure S5 SEM images of compound 1(a), compound 2(b) compound 3(c).

Figure S6 Typical isothermal nitrogen adsorption–desorption isotherms compound 1(a), compound 2(b), compound 3(c) derived from Ni-MOF.