Supporting information for

Facile Synthesis of Two-dimensional Layered Ni-MOF Electrode Material for High Performance Supercapacitors

Cunrong Zhang,^a Qi Zhang,^{*a} Kai Zhang,^a Zhenyu Xiao,^a Yu Yang,^a Lei Wang^{*a}

Fig S1 TG patterns of the as-synthesized Ni-MOF.

Figure S2 PXRD patterns of different materials obtained from Ni-MOF.

Table S1 The specific capacitance of different materials in three-electrode system at current density of 2 A g^{-1} .

Material	Calcination	Specific BET surface	Specific Capacitance
	temperature (°C)	area $(m^2 g^{-1})$	$(F g^{-1})$
Ni-MOF	_	436.06	1688.9
Compound 1	400	123	198.7
Compound 2	500	98	82.0
Compound 3	600	60	77.7

Figure S3 (a and b) The SEM of the 2D Ni-MOF.

Figure S4 (a and b) TEM images of the Ni-MOF after 5000 charge-discharge.

Figure S5 SEM images of compound 1(a), compound 2(b) compound 3(c).

Figure S6 Typical isothermal nitrogen adsorption—desorption isotherms compound 1(a), compound 2(b), compound 3(c) derived from Ni-MOF.