Electronic Supplementary Material (ESI)

Electronic Supplementary Information

Linear-type carbazoledioxazine-based organic semiconductors: the effect of backbone planarity on the

molecular orientation and charge transport properties

Rikuo Otsuka, Yang Wang*, Takehiko Mori, and Tsuyoshi Michinobu*

Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

*Corresponding address: Yang Wang Tel/Fax: +81-3-5734-2469, E-mail: wang.y.av@m.titech.ac.jp

Tsuyoshi Michinobu Tel/Fax: +81-3-5734-3774, E-mail: michinobu.t.aa@m.titech.ac.jp

Content

- 1. Angular-type and linear-type carbazoledioxazines (CZ)
- 2. FT-IR spectra
- 3. GPC curves
- 4. TGA curves
- 5. DSC curves
- 6. Annealing temperature dependence of the mobilities
- 7. Schematic illustration of the charge transport models
- 8. 1D profiles of the 2D-GIWAXS patterns
- 9. NMR spectra

Fig. S1 The ¹H NMR resonance multiplicity of angular-type and linear-type carbazoledioxazine derivatives.

Fig. S2 FT-IR spectra of 4 (left) and the linear carbazoledioxazine monomer CZ (right).

Fig. S3 GPC curves of (a) PCZT and (b) PCZTT using 1,2-dichlorobenzene as the eluent at 40 °C. Polystyrene standards were used for determining the molecular weights.

Fig. S4 Thermogravimetric analysis (TGA) under a nitrogen atmosphere at the heating rate of 10 °C min⁻¹.

Fig. S5 Differential scanning calorimetry (DSC) curves of (a) PCZT and (b) PCZTT under a nitrogen atmosphere at the heating or cooling rate of 10 $^{\circ}$ C min⁻¹.

Fig. S6 Current-voltage (I-V) characteristics of TFTs at different thermal annealing temperatures. Transfer characteristics for PCZT films annealed at (a) 100 °C, (b) 150 °C, and (c) 250 °C. Transfer characteristics for PCZTT films annealed at (d) 100 °C and (e) 150 °C. (f) Output characteristics for PCZTT films after annealing at 250 °C (L = 100 µm and W = 1 mm. All the measurements were done in air).

Fig. S7 The corresponding 1D profiles of the 2D-GIWAXS patterns.

Fig. S8 Schematic illustration of the charge transport models in lamellar stacking conjugated polymers. (a) Face-on texture of polymeric crystallites; (b) edge-on texture of polymeric crystallites.

Fig. S9 ¹H NMR of compound 2 in CDCl₃.

Fig. S10 ¹³C NMR of compound **2** in CDCl₃.

Fig. S11 ¹H NMR of compound **3** in CDCl₃.

Fig. S12 ¹³C NMR of compound **3** in CDCl₃.

Fig. S13 ¹H NMR of compound 4 in CDCl₃.

Fig. S14 ¹³C NMR of compound 4 in CDCl₃.

Fig. S15 ¹H NMR of compound CZ in CDCl₃.

Fig. S16¹³C NMR of compound CZ in CDCl₃.

Fig. S17 ¹H NMR of PCZT in CDCl₃.

Fig. S18 ¹H NMR of PCZTT in CDCl₃.