## **Electronic Supplementary Information (ESI)**

## Structurally colored coating films with tunable iridescence fabricated via cathodic electrophoretic deposition of silica particles

Kiyofumi Katagiri,\*<sup>a</sup> Kensuke Uemura, <sup>a</sup> Ryo Uesugi, <sup>a</sup> Kei Inumaru, <sup>a</sup> Takahiro Seki <sup>b</sup> and Yukikazu Takeoka \*<sup>b</sup>

<sup>a</sup> Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan. E-mail: kktgr@hiroshima-u.ac.jp.

<sup>b</sup>.Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Furocho, Chikusa-ku, Nagoya 464-8603, Japan. E-mail: ytakeoka@apchem.nagoya-u.ac.jp



Fig. S1 Schematic drawing of the setup of the EPD system used in the present study.



Fig. S2 Schematic drawings of the procedure for cross-sectional SEM observation of an EPD coating film consisting of a  $SiO_2$  particle array.



**Fig. S3** Thickness of the cathodic EPD coating films as a function of the EPD duration. The coating films were prepared using SiO<sub>2</sub> particles with a diameter of 260 nm on ITO-coated glass substrates. The quantities of PDDA and CB added to the coating sols were  $5.9 \times 10^{-3}$  and  $3.6 \times 10^{-3}$  wt%, respectively. The applied voltage was fixed at 5 V.



**Fig. S4** Thickness of the cathodic EPD coating films as a function of applied voltage of EPD process. The coating films were prepared using SiO<sub>2</sub> particles with a diameter of 260 nm on ITO-coated glass substrates. The quantities of PDDA and CB added to the coating sols were  $5.9 \times 10^{-3}$  and  $3.6 \times 10^{-3}$  wt%, respectively. The EPD duration was fixed at 8 min.