Divergent synthesis of dual 1,4-dihydropyridines with different substituted patterns from enaminones and aldehydes through domino reactions †

Fu-Jun Liu,^a Tian-Tian Sun,^a Yun-Gang Yang,^a Chao Huang,^{*b} and Xue-Bing Chen^{*a}

^aKey Laboratory of Natural Pharmaceutical & Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661199, P. R. China.
^b School of Chemistry and Environment, Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, Yunnan 650503
*E-mail: orangekaka@126.com, huang.chao@hotmail.com.
Tel & Fax: +86 873 3694923

Table of Contents

1.	General Information	S2
2.	Synthesis and Spectral Data of Compounds 3	S3–S9
3.	Synthesis and Spectral Data of Compounds 4	S10–S19
4.	Copies of Original ¹ H and ¹³ C NMR Spectra	S20–S102
5.	Crystal X-ray Structures of Compound 3n	S103
6.	Reference and Note	S104

1. General Information

All compounds were fully characterized by spectroscopic data. NMR spectra were recorded on a Bruker DRX400 (¹H: 400 MHz, ¹³C: 100 MHz). Chemical shifts (δ) are expressed in units of ppm, and *J* values are given in Hz. CDCl₃ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF254. The melting points are uncorrected and were determined on a XT-4A melting point apparatus. HRMs were performed on an Agilent LC/MSD TOF instrument and a Monoisotopic Mass instrument. All chemicals and solvents were used as received without further purification unless otherwise stated.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

2. Synthesis and Spectral Data of Compounds 3

General procedure for the synthesis of 1,4-dihydropyridines 3

A mixture of enaminones **1** (1.0 mmol), aldehydes **2** (0.6 mmol), *p*-TSA (0.3 mmol), and EtOH (15 mL) was stirred at reflux for 3 h. After the desired product was formed as indicated by TLC, the reaction mixture was quenched with saturated NH₄Cl solution (2 mL) and extracted with ethyl acetate (40 mL). The organic phase were dried over Mg₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography (petroleum ether/ethyl acetate = 2:3) giving a white solid **3**.

Spectroscopic data of 1,4-dihydropyridines 3

9-(4-chlorophenyl)-10-(4-fluorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10hexahydroacridine-1,8(2*H*,5*H*)-dione (3a)

White solid; Mp 296–298 °C; IR (KBr): 2959, 1649, 1618, 1500, 1371, 1226 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.35 (d, *J* = 8.4 Hz, 2H, ArH), 7.20–7.29 (m, 6H, ArH), 5.24 (s, 1H, CH), 2.03–2.22 (m, 6H, CH₂), 1.78–1.83 (m, 2H, CH₂), 0.96 (s, 6H, 2×CH₃), 0.81 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 162.3 (d, ¹*J* _{C-F} = 248.8 Hz), 162.3 (d, ¹*J* _{C-F} = 248.8 Hz), 149.7, 144.6, 134.9, 131.6, 130.9, 129.5, 129.3, 128.2, 117.3, 114.5, 50.1, 41.9, 32.4, 32.4, 29.7, 26.8; HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₃₀ClFNO₂⁺ [(M+H)⁺], 478.1944; found, 478.1943.

10-(4-fluorophenyl)-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3b)

White solid; Mp 298–299 °C; IR (KBr): 2959, 1641, 1510, 1402, 1220, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.30 (m, 6H, ArH), 7.10–7.13 (m, 1H, ArH), 5.29 (s, 1H, CH), 2.21 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.14 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.08 (AB, *J* = 16.0 Hz, 2H, CH₂), 1.83 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.97 (s, 6H, 2×CH₃), 0.82 (s,

6H, 3×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 162.5 (d, ¹J _{C-F} = 249.0 Hz), 149.5, 146.0, 135.1, 135.0, 131.8, 128.1, 127.8, 126.0, 117.2, 114.8, 50.2, 41.9, 32.6, 32.4, 29.8, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₁FNO₂⁺ [(M+H)⁺], 444.2333; found, 444.2332.

10-(3-fluorophenyl)-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3c)

White solid; Mp 274–275 °C; IR (KBr): 2959, 1642, 1608, 1371, 1222, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.58 (q, *J* = 8.0 Hz, 1H, ArH), 7.43 (d, *J* = 8.0 Hz, 2H, ArH), 7.28–7.33 (m, 3H, ArH), 7.08–7.15 (m, 2H, ArH), 7.01 (d, *J* = 8.0 Hz, 1H, ArH), 5.29 (s, 1H, CH), 2.18–2.24 (m, 4H, CH₂), 2.15 (AB, *J* = 16.0 Hz, 2H, CH₂), 1.85 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.98 (s, 6H, 2×CH₃), 0.83 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 149.0, 145.9, 140.6, 140.5, 128.1, 127.8, 126.0, 117.0, 116.8 (d, ²*J* _{C-F} = 20.0 Hz), 50.2, 41.7, 32.7, 32.5, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₁FNO₂ ⁺[(M+H)⁺], 444.2333; found, 444.2339.

10-(3-chlorophenyl)-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10hexahydroacridine-1,8(2*H*,5*H*)-dione (3d)

White solid; Mp 276–277 °C; IR (KBr): 2954, 1634, 1400, 1359, 1225, 839 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.52–7.59 (m, 2H, ArH), 7.37 (d, *J* = 8.0 Hz, 2H, ArH), 7.22–7.29 (m, 3H, ArH), 7.17 (d, *J* = 8.0 Hz, 1H, ArH), 5.24 (s, 1H, CH), 2.22 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.15 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.09 (AB, *J* = 16.0 Hz, 2H, CH₂), 1.83 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.98 (s, 6H, 2×CH₃), 0.83 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 149.2, 144.5, 140.1, 131.6, 130.0, 129.3, 128.3, 114.5, 50.1, 41.8, 32.5, 32.4, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₀FCINO₂ ⁺[(M+H)⁺], 494.1648; found, 494.1648.

10-(3-chlorophenyl)-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3e)

White solid; Mp 257–258 °C; IR (KBr): 2961, 1637, 1571, 1369, 1224, 693 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (t, *J* = 4.0 Hz, 2H, ArH), 7.42 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.29 (m, 2H, ArH), 7.18–7.21 (m, 1H, ArH), 7.12–7.14 (m, 1H, ArH), 5.29 (s, 1H, CH), 2.07–2.24 (m, 6H, CH₂), 1.84 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.98 (s, 6H, 2×CH₃), 0.83 (s, 6H, 2×CH₃);

¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 149.0, 145.9, 140.3, 129.9, 128.1, 127.8, 126.0, 114.9, 50.2, 41.8, 32.7, 32.5, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₁ClNO₂⁺ [(M+H)⁺], 460.2038; found, 460.2038.

10-(4-bromophenyl)-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10hexahydroacridine-1,8(2*H*,5*H*)-dione (3f)

White solid; Mp 287–290 °C; IR (KBr): 1658, 1636, 1610, 1398, 1225, 845 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.73 (d, *J* = 12.0 Hz, 2H, ArH), 7.36 (d, *J* = 8.0 Hz, 2H, ArH), 7.23 (d, *J* = 8.0 Hz, 2H, ArH), 7.13 (d, *J* = 8.0 Hz, 2H, ArH), 5.24 (s, 1H, CH), 2.05–2.24 (m, 6H, CH₂), 1.80–1.85 (m, 2H, CH₂), 0.98 (s, 6H, 2×CH₃), 0.83 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 149.3, 144.5, 138.0, 131.6, 129.3, 128.3, 123.6, 114.5, 50.1, 41.9, 32.5, 32.4, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₀BrClNO₂⁺ [(M+H)⁺], 538.1143; found, 538.1445.

10-(4-bromophenyl)-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3g)

White solid; Mp >300 °C; IR (KBr): 2955, 1632, 1593, 1363, 1224, 708 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (d, *J* = 8.0 Hz, 2H, ArH), 7.42 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.29 (m, 2H, ArH), 7.12–7.16 (m, 3H, ArH), 5.29 (s, 1H, CH), 2.13-2.24 (m, 4H, CH₂), 2.08 (AB, *J* = 16.0 Hz, 2H, CH₂), 1.83 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.98 (s, 6H, 2×CH₃), 0.83 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 149.1, 145.9, 138.2, 133.4, 128.1, 127.8, 126.0, 123.5, 114.9, 50.2, 41.9, 32.6, 32.5, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₁BrNO₂⁺ [(M+H)⁺], 504.1533; found, 504.1535.

10-(3-bromophenyl)-3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3h)

White solid; Mp 262–264 °C; IR (KBr): 2955, 1642, 2510, 1361, 1222, 851 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.70–7.73 (m, 1H, ArH), 7.41–7.50 (m, 4H, ArH), 7.22–7.28 (m, 3H, ArH), 7.10–7.14 (m, 1H, ArH), 5.28 (s, 1H, CH), 2.07–2.24 (m, 6H, CH₂), 1.83 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.98 (s, 6H, 2×CH₃), 0.83 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 149.1, 145.9, 140.4, 132.8, 128.1, 127.8, 126.1, 114.9, 77.4, 77.1, 76.8, 50.2, 41.8,

32.7, 32.5, 29.7, 26.9; HRMS (ESI-TOF): *m*/*z* calcd for C₂₉H₃₁BrNO₂⁺ [(M+H)⁺], 504.1533; found, 504.1533.

9-(4-chlorophenyl)-3,3,6,6-tetramethyl-10-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3i)

White solid; Mp 239–241 °C; IR (KBr): 2955, 1649, 1583, 1336, 1224, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.57–7.60 (m, 3H, ArH), 7.39 (d, *J* = 8.4 Hz, 2H, ArH), 7.22–7.25 (m, 4H, ArH), 5.26 (s, 1H, CH), 2.07–2.24 (m, 6H, CH₂), 1.80–1.85 (m, 2H, CH₂), 0.96(s, 6H, 2×CH₃), 0.82 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 149.9, 144.8, 138.9, 131.5, 129.5, 129.3, 128.2, 50.1, 41.8, 32.4, 32.4, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for : C₂₉H₃₁ClNO₂⁺ [(M+H)⁺], 460.2038; found, 460.2040.

3,3,6,6-tetramethyl-9,10-diphenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (3j)

White solid; Mp 255–257 °C; IR (KBr): 2957, 1642, 1593, 1365, 1220, 708 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.56–7.61 (m, 3H, ArH), 7.46 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.29 (m, 4H, ArH), 7.11 (t, *J* = 8.0 Hz, 1H, ArH), 5.31 (s, 1H, CH), 2.22 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.14 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.10 (AB, *J* = 16.0 Hz, 2H, CH₂), 1.84 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.96 (s, 6H, 2×CH₃), 0.81 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 149.7, 146.2, 139.1, 130.0, 129.4, 128.1, 127.9, 125.9, 114.6, 50.2, 41.8, 32.4, 29.7, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₃₂NO₂⁺ [(M+H)⁺], 426.2428; found, 426.2427.

9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-10-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3k)

White solid; Mp 234–235 °C; IR (KBr): 2957, 1642, 1577, 1369, 1224, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.54–7.60 (m, 3H, ArH), 7.37 (t, *J* = 8.0 Hz, 2H, ArH), 7.25 (t, *J* = 8.0 Hz, 2H, ArH), 6.80 (t, *J* = 8.0 Hz, 2H, ArH), 5.23 (s, 1H, CH), 3.75 (m, 3H, OCH₃), 2.20 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.13 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.08 (AB, *J* = 16.0 Hz, 2H, CH₂), 1.82 (AB, *J* = 16.0 Hz, 2H, CH₂), 0.94 (s, 6H, 2×CH₃), 0.81 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 157.7, 149.5, 139.1, 138.8, 130.1, 129.4, 128.8, 114.8, 113.5, 55.1, 50.2, 41.8, 32.4, 31.9, 29.8, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₃₀H₃₄NO₃⁺ [(M+H)⁺],

456.2553; found, 456.2532.

3,3,6,6-tetramethyl-9-phenyl-10-(p-tolyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)dione (3I)

White solid; Mp 233–234 °C; IR (KBr): 2961, 1644, 1573, 1361, 1224, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.0 Hz, 1H, ArH), 7.35 (d, *J* = 8.0 Hz, 1H, ArH), 7.26 (d, *J* = 8.0 Hz, 2H, ArH), 7.10–7.14 (m, 1H, ArH), 7.04–7.08 (m, 2H, ArH), 5.30 (s, 1H, CH), 2.50 (s, 3H, CH₃), 2.07–2.24 (m, 6H, CH₂), 1.83–1.87 (m, 2H, CH₂), 0.96 (s, 6H, 2×CH₃), 0.82 (s, 6H, 2×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 149.8, 146.2, 139.0, 130.1, 128.0, 127.9, 125.9, 114.5, 50.3, 41.8, 32.7, 32.4, 29.7, 26.8, 21.5; HRMS (ESI-TOF): *m/z* calcd for C₃₀H₃₄NO₂+ [(M+H)⁺], 440.2584; found, 440.2582.

10-butyl-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3m)

White solid; Mp 210–213 °C; IR (KBr): 2961, 1649, 1628, 1369, 1238, 1122 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.17–7.20 (m, 2H, ArH), 7.11–7.14 (m, 2H, ArH), 5.22 (s, 1H, CH), 3.63–3.72 (m, 2H, CH₂), 2.54 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.40 (AB, *J* = 16.0 Hz, 2H, CH₂), 2.18–2.26 (m, 4H, CH₂), 1.57–1.61 (m, 2H, CH₂), 1.35–1.41 (m, 2H, CH₂), 1.09 (s, 6H, 2×CH₃), 0.99 (s, 9H, 3×CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.5, 150.4, 144.4, 131.3, 129.0, 128.0, 115.0, 115.0, 49.9, 44.6, 40.4, 33.5, 32.5, 31.6, 29.3, 27.8, 19.9, 13.8; HRMS (ESI-TOF): *m/z* calcd for C₂₇H₃₅CINO₂⁺ [(M+H)⁺], 440.2351; found, 440.2351.

9,10-bis(4-chlorophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (3n)

White solid; Mp 267–268 °C; IR (KBr): 2944, 1634, 1495, 1363, 1234, 728 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.54 (d, *J* = 8.0 Hz, 2H, ArH), 7.33 (d, *J* = 8.0 Hz, 2H, ArH), 7.20–7.29 (m, 4H, ArH), 5.34 (s, 1H, CH), 2.33–2.40 (m, 2H, CH₂), 2.15–2.29 (m, 4H, CH₂), 2.02–2.08 (m, 2H, CH₂), 1.87–1.94 (m, 2H, CH₂), 1.75–1.84 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 151.3, 144.9, 137.4, 135.6, 131.7, 130.3, 129.1, 128.3, 115.4, 36.7, 31.8, 28.3, 21.1; HRMS (ESI-TOF): *m/z* calcd for C₂₅H₂₂Cl₂NO₂+ [(M+H)+], 438.1022; found, 438.1022. **10-(3-chlorophenyl)-9-(4-chlorophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-**

dione (3o)

White solid; Mp >300 °C; IR (KBr): 1636, 1589, 1402, 1233, 1180, 957 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.54 (m, 2H, ArH), 7.32 (d, *J* = 8.0 Hz, 2H, ArH), 7.19–7.30 (m, 3H, ArH), 5.32 (s, 1H, CH), 2.32–2.39 (m, 2H, CH₂), 2.17–2.28 (m, 4H, CH₂), 2.01–2.08 (m, 2H, CH₂), 1.87–1.94 (m, 2H, CH₂), 1.74–1.83 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 196.0, 151.2, 144.9, 140.0, 131.6, 129.9, 128.3, 115.4, 77.4, 77.1, 76.8, 36.7, 31.8, 28.3, 21.1; HRMS (ESI-TOF): *m/z* calcd for C₂₅H₂₂Cl₂NO₂⁺ [(M+H)⁺], 438.1022; found, 438.1001. **10-(3-bromophenyl)-9-(4-methoxyphenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (3p)**

White solid; Mp >300 °C; IR (KBr): 2951, 1632, 1512, 1363, 1234, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.68 (t, *J* = 8.0 Hz, 1H, ArH), 7.45 (t, *J* = 8.0 Hz, 2H, ArH), 7.32 (d, *J* = 8.0 Hz, 1H, ArH), 7.25–7.29 (m, 1H, ArH), 6.82 (d, *J* = 8.0 Hz, 2H, ArH), 5.32 (s, 1H, CH), 3.77 (m, 3H, OCH₃), 2.20–2.41 (m, 6H, CH₂), 2.02–2.08 (m, 2H, CH₂), 1.78–1.94 (m, 4H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 196.0, 157.9, 150.6, 140.4, 138.8, 132.7, 128.7, 116.1, 113.7, 55.2, 36.8, 31.2, 28.3, 21.2; HRMS (ESI-TOF): *m/z* calcd for C₃₀H₂₄BrNNaO₃⁺ [(M+H)⁺], 500.0832; found, 500.0826.

9-(4-chlorophenyl)-10-(p-tolyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (3q)

White solid; Mp 275–278 °C; IR (KBr): 2962, 1630, 1569, 1363, 1223, 835 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ =7.33–7.37 (m, 4H, ArH), 7.22 (d, *J* = 8.0 Hz, 2H, ArH), 7.13–7.17 (m, 2H, ArH), 5.34 (s, 1H, CH), 2.47 (s, 3H, CH₃), 2.16–2.38 (m, 6H, CH₂), 2.03–2.10 (m, 6H, CH₂), 1.86–1.92 (m, 2H, CH₂), 1.75–1.79 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 196.1, 152.1, 145.2, 139.7, 136.2, 131.5, 129.2, 128.2, 115.1, 36.8, 31.8, 28.3, 21.2, 21.1; HRMS (ESI-TOF): *m/z* calcd for C₂₆H₂₅CINO₂⁺ [(M+H)⁺], 418.1568; found, 417.1568.

10-(4-fluorophenyl)-3,3,6,6-tetramethyl-9-propyl-3,4,6,7,9,10-hexahydroacridine-1,8(2*H*,5*H*)-dione (3r)

White solid; Mp 260–263 °C; IR (KBr): 2957, 1634, 1510, 1385, 1224, 851 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.23 (t, *J* = 10.0 Hz, 2H, ArH), 7.14–7.18 (m, 2H, ArH), 4.23 (d, *J* =

5.0 Hz, 1H, CH), 2.05–2.22 (m, 4H, 2×CH₂), 2.03 (AB, J = 15.0 Hz, 2H, CH₂), 1.73 (AB, J = 15.0 Hz, 2H, CH₂), 1.41–1.46 (m, 2H, CH₂), 1.26–1.32 (m, 2H, CH₂), 0.97 (s, 6H, 2×CH₃), 0.95 (s, 6H, 2×CH₃), 0.88 (t, J = 5.0 Hz, 3H, CH₃); ¹³C NMR (125 MHz, CDCl₃): $\delta = 196.2$, 162.4 (d, ¹ $J_{C-F} = 248.8$ Hz), 161.4, 150.7, 135.2, 131.4, 117.1, 114.3, 77.3, 77.1, 76.8, 50.4, 41.8, 38.1, 32.2, 30.0, 26.6, 26.0, 18.8, 14.4; HRMS (ESI-TOF): m/z calcd for C₂₆H₃₃FN₂O⁺ [(M+H)⁺], 410.2409; found, 410.2491.

3. Synthesis and Spectral Data of Compounds 4

General procedure for the synthesis of compounds 4

A mixture of enaminones **1** (1.0 mmol), aldehydes **2** (0.6mmol), p-TSA (0.3mmol), and CH₃CN (10 mL) was stirred at reflux for 2 h. After the desired product was formed as indicated by TLC, the reaction mixture was quenched with saturated NH₄Cl solution (2 mL) and extracted with ethyl acetate (40 mL). The organic phase were dried over Mg₂SO₄, and concentrated under vacuum. The residue was purified by flash chromatography (petroleum ether/ethyl acetate = 1:1) giving a yellow solid **4**.

Spectroscopic data of 1,4-dihydropyridines 4

(E)-9-(4-chlorophenyl)-10-(4-fluorophenyl)-8-((4-fluorophenyl)imino)-3,3,6,6tetramethyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2H)-one (4a)

Yellow solid; Mp 260–262 °C; IR (KBr): 2959, 1649, 1500, 1371, 1226, 846cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.41 (t, *J* = 8.0 Hz, 2H, ArH), 7.17–7.27 (m, 6H, ArH), 6.87–6.93 (m, 2H, ArH), 6.41–6.47 (m, 2H, ArH), 5.54 (s, 1H, CH), 5.25 (d, *J* = 32.4 Hz, 1H, CH), 1.92–2.24 (m, 6H, 3×CH₂), 1.67–1.83 (m, 2H, CH₂), 0.95 (s, 3H, CH₃), 0.85 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.78 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 162.4 (d, ¹*J* _{C-F} = 245.0 Hz), 158.8 (d, ¹*J* _{C-F} = 238.5 Hz), 150.3, 148.0, 145.4, 142.0, 145.4, 142.0, 135.4, 131.4, 131.1, 129.6, 127.8, 120.7 (d, ³*J* _{C-F} = 7.5 Hz), 120.6 (d, ³*J* _{C-F} = 7.5 Hz), 117.0 (d, ²*J* _{C-F} = 21.5 Hz), 115.4(d, ²*J* _{C-F} = 21.9 Hz), 115.1(d, ²*J* _{C-F} = 21.9 Hz), 114.6, 113.1, 50.2, 41.9, 40.8, 33.2, 32.4, 31.4, 29.9, 29.6, 26.7; HRMS (ESI-TOF): *m*/*z* calcd for C₃₅H₃₄ClF₂N₂O⁺ [(M+H)⁺], 571.2322; found, 571.2323.

(E)-10-(4-fluorophenyl)-8-((4-fluorophenyl)imino)-3,3,6,6-tetramethyl-9-phenyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2H)-one (4b)

Yellow solid; Mp 233–234 °C; IR (KBr): 2957, 1644, 1579, 1367, 1267, 853 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃): δ = 7.51 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.28 (m, 6H, ArH), 7.15–7.11 (m, 1H, ArH), 6.91–6.95 (m, 2H, ArH), 6.48 (d, *J* = 8.0 Hz, 2H, ArH), 5.63 (s, 1H, CH), 2.01–2.27 (m, 6H, 3×CH₂), 1.81–1.87 (m, 2H, CH₂), 0.99 (s, 3H, CH₃), 0.88 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.74 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 162.3 (d, ¹*J* _{C-F} = 249.0 Hz), 158.8 (d, ¹*J* _{C-F} = 238.0 Hz), 150.19, 148.21, 146.69, 141.85, 135.57, 135.53, 131.59, 128.18, 127.69, 125.57, 120.72 (d, ³*J* _{C-F} = 8.0 Hz), 116.9 (d, ²*J* _{C-F} = 21.3 Hz), 115.3 (d, ²*J* _{C-F} = 22.0 Hz), 115.1 (d, ²*J* _{C-F} = 22.0 Hz), 114.9, 113.4, 50.3, 41.9, 41.8, 40.8, 33.5, 32.4, 31.5, 30.0, 29.6, 26.8, 26.69; HRMS (ESI-TOF): *m*/*z* calcd for C₃₅H₃₅F₂N₂O⁺ [(M+H)⁺], 537.2712; found,537.2713.

(E)-9,10-bis(4-chlorophenyl)-8-((4-chlorophenyl)imino)-3,3,6,6-tetramethyl-

3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4c)

Yellow solid; Mp 260–262 °C; IR (KBr): 2959, 1647, 1489, 1369, 1222, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 8.0 Hz, 2H, ArH), 7.40 (d, *J* = 8.0 Hz, 2H, ArH), 7.19 (t, *J* = 8.0 Hz, 6H, ArH), 6.42 (d, *J* = 8.0 Hz, 1H, ArH), 5.53 (s, H, CH), 1.93–2.24 (m, 6H, 3×CH₂), 1.68–1.84 (m, 2H, CH₂), 0.97 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.81 (s, 3H, CH₃), 0.71 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 163.4, 150.5, 149.9, 145.3, 141.9, 137.9, 135.2, 131.1, 130.2, 129.6, 128.7, 127.8, 127.5, 120.8, 114.6, 113.2, 50.2, 41.9, 41.8, 40.8, 33.3, 32.4, 31.5, 29.9, 29.5, 26.7 ; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₄Cl₃N₂O⁺ [(M+H)⁺], 603.1731; found, 603.1730.

(*E*)-10-(4-chlorophenyl)-8-((4-chlorophenyl)imino)-3,3,6,6-tetramethyl-9-phenyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4d)

Yellow solid; Mp 259–262 °C; IR (KBr): 2955, 1639, 1583, 1368, 1224, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.56 (m, 5H, ArH), 7.14–7.29 (m, 6H, ArH), 6.47 (d, *J* = 8.0 Hz, 2H, ArH), 5.62 (s, 1H, CH), 1.96–2.29 (m, 6H, 3×CH₂), 1.73–1.88 (m, 2H, CH₂), 1.00 (s, 3H, CH₃), 0.89 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.74 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 196.2, 163.6, 150.7, 150.2, 146.5, 141.9, 138.1, 135.1, 133.6, 131.2, 130.2, 129.6,

128.6, 128.5, 128.2, 127.7, 127.4, 125.7, 120.9, 115.0, 113.5, 50.2, 41.9, 41.8, 40.9, 33.5, 32.4, 31.5, 29.9, 29.5, 26.8, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₅Cl₂N₂O [(M+H)⁺], 569.2121; found, 569.2121.

(*E*)-10-(3-chlorophenyl)-9-(4-chlorophenyl)-8-((3-chlorophenyl)imino)-3,3,6,6tetramethyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4e)

Yellow solid; Mp 274–277 °C; IR (KBr): 2957, 1640, 1508, 1369, 1261, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.51 (d, *J* = 8.0 Hz, 2H, ArH), 7.42 (d, *J* = 8.0 Hz, 2H, ArH), 7.23–7.29 (m, 3H, ArH), 7.16 (t, *J* = 8.0 Hz, 2H, ArH), 6.96 (d, *J* = 8.0 Hz, 1H, ArH), 6.53 (s, 1H, ArH), 6.40 (d, *J* = 8.0 Hz, 1H, ArH), 5.53 (s, 1H, CH), 1.97–2.27 (m, 6H, 3×CH₂), 1.84 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.74 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.00 (s, 3H, CH₃), 0.89 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.75 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 163.6, 153.3, 149.8, 145.1, 142.1, 140.5, 135.6, 134.2, 131.2, 130.9, 130.1, 129.8, 129.7, 129.6, 129.5, 127.9, 122.3, 119.4, 117.8, 114.5, 113.3, 50.2, 41.9, 41.8. 41.0, 33.3, 32.5, 31.6, 29.9, 29.5, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₄Cl₃N₂O⁺ [(M+H)⁺], 603.1731; found, 603.1729.

(*E*)-10-(3-chlorophenyl)-8-((3-chlorophenyl)imino)-3,3,6,6-tetramethyl-9-phenyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4f)

Yellow solid; Mp 209–211 °C; IR (KBr): 2957, 1644, 1584, 1371, 1230, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.54 (m, 4H, ArH), 7.26–7.30 (m, 2H, ArH), 7.12–7.21 (m, 3H, ArH), 6.95 (d, *J* = 8.0 Hz, 1H, ArH), 6.54 (s, 1H, ArH), 6.41 (d, *J* = 8.0 Hz, 1H, ArH), 5.58 (s, 1H, CH), 1.73–2.26 (m, 8H, 4×CH₂), 1.00 (s, 3H, CH₃), 0.90 (s, 3H, CH₃), 0.84 (s, 3H, CH₃), 0.75 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 163.7, 153.5, 149.6, 146.4, 141.9, 140.7, 134.2, 129.7, 129.6, 128.4, 128.2, 128.1, 127.8, 125.7, 122.1, 119.5, 117.8, 114.9, 113.6, 50.3, 41.9, 41.8, 41.0, 33.5, 32.5, 31.6, 29.9, 29.5, 26.8, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₅Cl₂N₂O⁺ [(M+H)⁺], 569.2121; found, 569.2122.

(E)-10-(4-bromophenyl)-8-((4-bromophenyl)imino)-3,3,6,6-tetramethyl-9-phenyl-

3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4g)

Yellow solid; Mp 163–166 °C; IR (KBr): 2955, 1639, 1581, 1369, 1218, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, *J* = 8.0 Hz, 2H, ArH), 7.48 (d, *J* = 8.0 Hz, 2H, ArH), 7.32 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.29 (m, 3H, ArH), 7.13–7.17 (m, 3H, ArH), 6.42 (d, *J* = 8.0 Hz, 2H, ArH), 5.59 (s, 1H, CH), 1.95–2.27 (m, 6H, 3×CH₂), 1.72–1.99 (m, 2H, CH₂), 0.99 (s, 3H, CH₃), 0.88 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.73 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 163.5, 151.2, 149.8, 146.5, 141.8, 138.6, 133.2, 131.6, 128.2, 127.7, 125.6, 123.1, 121.4, 115.0, 114.9, 113.6, 50.3, 41.9, 41.8, 40.9, 33.5, 32.4, 31.5, 29.9, 29.5, 26.8, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₅Br₂N₂O⁺ [(M+H)⁺], 657.1111; found, 657.1111.

(*E*)-10-(3-bromophenyl)-8-((3-bromophenyl)imino)-9-(4-chlorophenyl)-3,3,6,6tetramethyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4h)

Yellow solid; Mp 164–167 °C; IR (KBr): 2961, 1644, 1580, 1404, 1230, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.68–7.71 (m, 1H, ArH), 7.40–7.48 (m, 4H, ArH), 7.21–7.25 (m, 3H, ArH), 7.10 (d, *J* = 4.0 Hz, 2H, ArH), 6.69 (s, 1H, ArH), 6.43–6.45 (m, 1H, ArH), 5.53 (s, 1H, CH), 1.97–2.27 (m, 6H, 3×CH₂), 1.84 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.74 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.00 (s, 3H, CH₃), 0.89 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.75 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 163.6, 153.5, 149.8, 145.1, 142.1, 140.7, 132.6, 131.2, 130.1, 129.6, 127.9, 125.2, 122.4, 122.3, 118.3, 114.5, 113.3, 50.2, 41.9, 41.8, 41.0, 33.3, 32.5, 31.6, 30.0, 29.5, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₄Br₂ClN₂O⁺ [(M+H)⁺], 691.0721; found, 691.0721.

(E)-10-(3-bromophenyl)-8-((3-bromophenyl)imino)-3,3,6,6-tetramethyl-9-phenyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4i)

Yellow solid; Mp 124–126 °C; IR (KBr): 2959, 1640, 1583, 1369, 1230, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.69 (d, *J* = 8.0 Hz, 1H, ArH), 7.44–7.49 (m, 4H, ArH), 7.23–7.29 (m, 3H, ArH), 7.09–7.17 (m, 3H, ArH), 6.70 (s, 1H, ArH), 6.44–6.47 (m, 1H, ArH), 5.57 (s, 1H, CH), 1.97–2.27 (m, 6H, 3×CH₂), 1.84 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.75 (AB, *J* = 16.0 Hz, 1H,

CH₂), 1.00 (s, 3H, CH₃), 0.90 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.76 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 163.7, 153.7, 149.7, 146.4, 141.9, 140.9, 132.5, 130.0, 128.2, 127.8, 125.7, 125.1, 122.4, 122.3, 118.3, 114.9, 113.7, 50.3, 41.9, 41.8, 41.0, 33.5, 32.5, 31.6, 30.0, 29.5, 26.8, 26.8; HRMS (ESI-TOF): *m*/*z* calcd for C₃₅H₃₅Br₂ClN₂O⁺ [(M+H)⁺], 657.1111; found, 657.1112.

(*E*)-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-10-phenyl-8-(phenylimino)-3,4,5,6,7,8,9,10octahydroacridin-1(2*H*)-one (4j)

White solid; Mp 252–254 °C; IR (KBr): 2957, 1636, 1579, 1373, 1216, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.53–7.57 (m, 3H, ArH), 7.49 (d, *J* = 8.0 Hz, 2H, ArH), 7.23–7.30 (m, 6H, ArH), 6.97–7.01 (m, 1H, ArH), 6.54 (d, *J* = 8.0 Hz, 2H, ArH), 5.62 (s, 1H, CH), 1.97–2.27 (m, 6H, 3×CH₂), 1.71–1.88 (m, 2H, CH₂), 0.98 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.72 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 162.9, 152.2, 150.6, 145.6, 142.0, 139.5, 130.9, 129.9, 129.8, 129.5, 129.1, 128.6, 127.7, 122.2, 119.5, 114.5, 112.7, 50.3, 41.9, 41.8, 40.8, 33.4, 32.4, 31.4, 29.9, 29.6, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₆ClN₂O⁺ [(M+H)⁺], 535.2511; found, 535.2510.

(*E*)-3,3,6,6-tetramethyl-9,10-diphenyl-8-(phenylimino)-3,4,5,6,7,8,9,10octahydroacridin-1(2*H*)-one (4k)

Yellow solid; Mp 230–232 °C; IR (KBr): 2955, 1639, 1589, 1367, 1227,700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.52–7.60 (m, 5H, ArH), 7.23–7.30 (m, 6H, ArH), 7.14 (t, *J* = 8.0 Hz, 1H, ArH), 6.99 (t, *J* = 8.0 Hz, 1H, ArH), 6.57 (d, *J* = 8.0 Hz, 2H, ArH), 5.68 (s, 1H, CH), 1.99–2.29 (m, 6H, 3×CH₂), 1.73–1.89 (m, 2H, CH₂), 0.99 (s, 3H, CH₃), 0.87 (s, 3H, CH₃), 0.84 (s, 3H, CH₃), 0.74 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 163.0, 152.4, 150.5, 146.9, 141.9, 139.6, 129.9, 129.1, 128.6, 128.3, 127.6, 125.5, 122.1, 119.6, 114.9, 113.1, 50.4, 41.9, 41.8, 40.9, 33.6, 32.4, 31.4, 30.0, 29.5, 26.8, 26.7; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₇N₂O⁺ [(M+H)⁺], 501.2900; found, 501.2903.

(E)-9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-10-phenyl-8-(phenylimino)-

3,4,5,6,7,8,9,10-octahydroacridin-1(2H)-one (4I)

Yellow solid; Mp 236–238 °C; IR (KBr): 2957, 1642, 1510, 1363, 1222, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.52–7.58 (m, 3H, ArH), 7.46 (d, *J* = 8.0 Hz, 2H, ArH), 7.23–7.29 (m, 5H, ArH), 6.98 (t, *J* = 8.0 Hz, 1H, ArH), 6.82 (t, *J* = 8.0 Hz, 2H, ArH), 6.56 (d, *J* = 8.0 Hz, 1H, ArH), 5.60 (s, 1H, ArH), 3.80 (s, 3H, OCH₃), 1.96–2.27 (m, 6H, 3×CH₂), 1.85 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.72 (AB, *J* = 16.0 Hz, 1H, CH₂), 1.98 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.84 (s, 3H, CH₃), 0.75 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 163.0, 157.4, 152.4, 150.2, 141.5, 139.7, 139.5, 129.8, 129.2, 128.9, 128.6, 122.0, 119.6, 115.1, 113.3, 113.0, 55.1, 50.4, 41.9, 41.8, 40.9, 32.7, 32.4, 31.4, 29.9, 29.5, 26.8; HRMS (ESI-TOF): *m/z* calcd for C₃₅H₃₉N₂O₂⁺ [(M+Na)⁺], 531.3006; found, 531.3007.

(E)-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-10-(p-tolyl)-8-(p-tolylimino)-

3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4m)

Yellow solid; Mp 163–165 °C; IR (KBr): 2955, 1639, 1504, 1362, 1218, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.47 (d, *J* = 8.0 Hz, 2H, ArH), 7.34 (d, *J* = 8.0 Hz, 2H, ArH), 7.22 (d, *J* = 8.0 Hz, 2H, ArH), 7.11 (d, *J* = 8.0 Hz, 2H, ArH), 7.06 (d, *J* = 8.0 Hz, 2H, ArH), 6.45 (d, *J* = 8.0 Hz, 2H, ArH), 5.60 (s, 1H, CH), 2.50 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 1.96–2.26 (m, 6H, 3×CH₂), 1.71–1.96 (m, 2H, CH₂), 0.98 (s, 3H, CH₃), 0.86 (s, 1H, CH₃), 0.83 (s, 3H, CH₃), 0.71 (s, 1H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 162.8, 150.8, 149.6, 145.7, 141.9, 139.1, 136.8, 131.4, 130.8, 130.5, 129.8, 129.2, 127.7, 119.5, 114.6, 112.6, 50.3, 41.8, 41.7, 40.7, 33.3, 32.4, 31.4, 29.9, 29.6, 26.7, 26.6, 21.3, 20.8; HRMS (ESI-TOF): *m/z* calcd for C₃₇H₄₀ClN₂O⁺ [(M+H)⁺], 563.2824; found, 563.2823.

(*E*)-3,3,6,6-tetramethyl-9-phenyl-10-(p-tolyl)-8-(p-tolylimino)-3,4,5,6,7,8,9,10octahydroacridin-1(2*H*)-one (4n)

Yellow solid; Mp 224–226 °C; IR (KBr): 2957, 1646, 1577, 1367, 1216, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.54 (d, *J* = 8.0 Hz, 2H, ArH), 7.34 (d, *J* = 8.0 Hz, 2H, ArH), 7.24–7.29 (m, 2H, ArH), 7.08–7.16 (m, 3H, ArH), 7.05 (d, *J* = 8.0 Hz, 2H, ArH), 6.46 (d, *J* = 8.0 Hz, 3H,

ArH), 5.85 (s, 1H, CH), 2.50 (s, 3H, ArCH₃), 2.31 (s, 3H, ArCH₃), 1.67–2.27 (m, 8H, 4×CH₂), 0.98 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.72 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.8, 162.9, 150.7, 149.8, 147.0, 141.7, 138.9, 137.0, 131.2, 130.4, 129.1, 128.3, 127.6, 125.4, 119.5, 115.0, 113.0, 50.4, 41.9, 41.8, 40.8, 33.6, 32.3, 31.4, 30.0, 29.5, 26.8, 26.7, 21.3, 20.8; HRMS (ESI-TOF): *m/z* calcd for C₃₇H₄₁N₂O⁺ [(M+H)⁺], 529.3213; found, 529.3218.

(*E*)-3,3,6,6-tetramethyl-9,10-diphenyl-8-(phenylimino)-3,4,5,6,7,8,9,10octahydroacridin-1(2*H*)-one (40)

Yellow solid; Mp 134–136 °C; IR (KBr):2959, 1644, 1600, 1373, 1228, 779 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.42–7.50 (m, 3H, ArH), 7.33 (d, *J* = 8.0 Hz, 1H, ArH), 7.24 (d, *J* = 8.0 Hz, 2H, ArH), 7.13 (t, *J* = 8.0 Hz, 1H, ArH), 7.04 (d, *J* = 8.0 Hz, 2H, ArH), 6.81 (d, *J* = 8.0 Hz, 1H, ArH), 6.37 (s, 1H,ArH), 6.33 (d, *J* = 8.0 Hz, 1H, ArH), 5.60 (s, 1H, CH), 2.50 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 1.97–2.23 (m, 6H, 3×CH₂), 1.72–1.89 (m, 2H, CH₂), 0.98 (s, 3H, CH₃), 0.87 (s, 3H, CH₃), 0.83 (s, 3H, CH₃), 0.73 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 162.7, 152.2, 150.7, 145.7, 141.9, 139.4, 138.4, 130.9, 129.9, 129.7, 128.4, 127.7, 122.9, 120.2, 116.4, 114.4, 112.6, 50.3, 41.8, 41.7, 40.8, 33.3, 32.4, 31.4, 29.9, 29.6, 26.7, 21.5; HRMS (ESI-TOF): *m/z* calcd for C₃₇H₄₀ClN₂O [(M+H)⁺], 563.2824; found, 563.3142.

(*E*)-3,3,6,6-tetramethyl-9-phenyl-10-(m-tolyl)-8-(m-tolylimino)-3,4,5,6,7,8,9,10octahydroacridin-1(2*H*)-one (4p)

Yellow solid; Mp 230–233 °C; IR (KBr): 2955, 1642, 1583, 1371, 1228, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (d, *J* = 8.0 Hz, 2H, ArH), 7.44 (t, *J* = 8.0 Hz, 1H, ArH), 7.26–7.34 (m, 3H, ArH), 7.11–7.16 (m, 2H, ArH), 7.04–7.08 (m, 2H, ArH), 6.79 (d, *J* = 8.0 Hz, 1H, ArH), 6.39 (s, 1H, ArH), 6.34 (d, *J* = 8.0 Hz, 1H, ArH), 5.65 (s, 1H, CH), 2.50 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 1.97–2.24 (m, 6H, 3×CH₂), 1.73–1.90 (m, 2H, CH₂), 0.99 (s, 3H, CH₃), 0.87 (s, 1H, CH₃), 0.83 (s, 3H, CH₃), 0.74 (s, 1H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 162.8, 152.4, 147.0, 141.8, 139.6, 138.3, 129.8, 128.4, 127.6, 125.4, 122.8, 120.2,

116.5, 114.8, 113.0, 50.4, 41.8, 41.8, 40.9, 33.6, 32.4, 31.4, 29.9, 29.5, 26.8, 26.7, 21.5; HRMS (ESI-TOF): *m/z* calcd for C₃₇H₄₁N₂O⁺ [(M+H)⁺], 529.3213; found, 529.3214.

(E)-9-(4-chlorophenyl)-3,3,6,6-tetramethyl-10-(o-tolyl)-8-(o-tolylimino)-

3,4,5,6,7,8,9,10-octahydroacridin-1(2H)-one (4q)

Yellow solid; Mp 250–253 °C; IR (KBr): 2955, 1536, 1485, 1369, 1224, 734 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.40–7.50 (m, 6H, ArH), 7.20–7.24 (m, 3H, ArH), 7.05–7.10 (m, 2H, ArH), 6.90 (t, *J* = 8.0 Hz, 1H, ArH), 6.37 (d, *J* = 8.0 Hz, 1H, ArH), 5.59 (s, 1H, CH), 2.33 (d, *J* = 24.0 Hz, 3H, ArCH₃), 1.80–2.26 (m, 6H, 3CH₂), 1.80-2.26 (m, 8H, 4×CH₂), 2.30 (s, 3H, ArCH₃), 1.60 (s, 3H, ArCH₃), 0.98 (s, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.82 (s, 3H, CH₃), 0.75 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 162.6, 151.0, 150.0, 146.3, 141.6, 138.6, 137.3, 131.6, 130.9, 130.1, 130.0, 129.5, 129.4, 127.8, 127.6, 127.5, 126.0, 122.2, 118.1, 114.3, 112.9, 50.4, 41.3, 40.7, 40.6, 34.2, 32.4, 31.4, 29.4, 29.2, 27.2, 17.8, 17.4; HRMS (ESI-TOF): *m/z* calcd for C₃₇H₄₀ClN₂O⁺ [(M+H)⁺], 563.2824; found, 563.2828.

(*E*)-9-(4-chlorophenyl)-10-(4-methoxyphenyl)-8-((4-methoxyphenyl)imino)-3,3,6,6tetramethyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4r)

Yellow solid; Mp 186–189 °C; IR (KBr): 2957, 1638, 1606, 1355, 1251, 846 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (d, *J* = 8.0 Hz, 2H, ArH), 7.22 (d, *J* = 8.0 Hz, 2H, ArH), 7.14 (d, *J* = 8.0 Hz, 2H, ArH), 7.04 (d, *J* = 8.0 Hz, 2H, ArH), 6.81 (d, *J* = 8.0 Hz, 2H, ArH), 6.49 (d, *J* = 8.0 Hz, 2H, ArH), 5.60 (s, 1H, CH), 3.92 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 1.97–2.25 (m, 6H, 3×CH₂), 1.73–1.90 (m, 2H, CH₂), 0.98 (s, 3H, CH₃), 0.87 (s, 3H, CH₃), 0.82 (s, 3H, CH₃), 0.71 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 195.9, 163.2, 159.6, 155.2, 151.1, 145.7, 145.4, 142.2, 132.0, 130.9, 130.8, 129.7, 129.5, 127.7, 120.7, 114.6, 114.0, 112.7, 55.6, 55.5, 50.3, 41.9, 41.8, 40.8, 33.3, 32.3, 31.4, 30.0, 29.7, 26.8, 26.6; HRMS (ESI-TOF): *m/z* calcd for C₃₇H₄₀ClN₂O₃⁺ [(M+H)⁺], 595.2722; found, 595.2723.

(*E*)-10-(3-chlorophenyl)-9-(4-chlorophenyl)-8-((3-chlorophenyl)imino)-3,4,5,6,7,8,9,10octahydroacridin-1(2*H*)-one (4r) Yellow solid; Mp 108–110 °C; IR (KBr): 2948, 1641, 1585, 1367, 1238, 961 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.46–7.50 (m, 2H, ArH), 7.39 (d, *J* = 8.0 Hz, 2H, ArH), 7.28 (s, 1H, ArH), 7.23 (d, *J* = 8.0 Hz, 2H, ArH), 7.13–7.18 (m, 2H, ArH), 6.93–6.95 (m, 1H, ArH), 6.57 (s, 1H, ArH), 6.44 (d, *J* = 4.0 Hz, 1H, ArH), 5.63 (s, 1H, CH), 2.19–2.37 (m, 3H, CH₂), 2.03–2.12 (m, 3H, CH₂), 1.90–1.99 (m, 2H, CH₂), 1.74–1.81 (m, 2H, CH₂), 1.55–1.63 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 196.1, 164.2, 153.3, 151.5, 154.5, 143.9, 140.6, 134.2, 131.3, 129.7, 129.6, 129.5, 129.5, 128.0, 122.4, 119.7, 118.1, 115.5, 114.3, 36.8, 32.6, 28.4, 28.2, 28.0, 21.4, 21.0; HRMS (ESI-TOF): *m/z* calcd for C₃₁H₂₆Cl₃N₂O⁺ [(M+H)⁺], 547.1105; found, 547.1122.

(E)-9-(4-chlorophenyl)-10-phenyl-8-(phenylimino)-3,4,5,6,7,8,9,10-octahydroacridin-1(2H)-one (4s)

Yellow solid; Mp 100–102 °C; IR (KBr):2918, 1635, 1590, 1383, 1088, 990 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.48–7.53 (m, 2H, ArH), 7.45 (d, *J* = 8.0 Hz, 2H, ArH), 7.20–7.27 (m, 6H, ArH), 6.95–6.98 (m, 1H, ArH), 6.57 (d, *J* = 4.0 Hz, 2H, ArH), 5.71 (s, 1H, CH), 2.19–2.34 (m, 3H, CH₂), 2.03–2.12 (m, 3H, CH₂), 1.86–1.97 (m, 2H, CH₂), 1.70–1.78 (m, 2H, CH₂), 1.54–1.61 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ = 196.2, 163.5, 152.2, 146.0, 143.8, 139.5, 131.1, 129.6, 129.1, 128.6, 127.9, 122.4, 119.8, 115.5, 113.8, 36.9, 32.7, 28.4, 28.2, 27.9, 21.5, 21.2; HRMS (ESI-TOF): *m/z* calcd for C₃₁H₂₈ClN₂O⁺ [(M+H)⁺], 479.1885; found, 479.1900.

(E)-9-(4-chlorophenyl)-10-(p-tolyl)-8-(p-tolylimino)-3,4,5,6,7,8,9,10-octahydroacridin-1(2H)-one (4t)

Yellow solid; Mp 98–99 °C; IR (KBr):2946, 1628, 1504, 1402, 1365, 834 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.44 (d, *J* = 8.0 Hz, 2H, ArH), 7.29 (d, *J* = 4.0 Hz, 2H, ArH), 7.20 (d, *J* = 4.0 Hz, 2H, ArH), 7.11 (d, *J* = 8.0 Hz, 2H, ArH), 7.03 (d, *J* = 4.0 Hz, 2H, ArH), 6.48 (d, *J* = 8.0 Hz, 2H, ArH), 5.69 (s, 1H, CH), 2.44 (s, 3H, CH₃), 2.28 (s, 3H, CH₃), 2.18–2.38 (m, 5H, CH₂), 2.05–2.11 (m, 3H, CH₂), 1.86–1.98 (m, 2H, CH₂), 1.68–1.77 (m, 2H, CH₂); ¹³C NMR

(100 MHz, CDCl₃): δ = 196.2, 163.5, 152.6, 149.4, 146.1, 143.8, 139.2, 136.8, 131.6, 131.0, 129.9, 129.8, 129.6, 129.2, 127.9, 119.8, 115.5, 113.7, 36.9, 32.7, 28.4, 28.2, 27.9, 21.5, 21.2, 20.8; HRMS (ESI-TOF): m/z calcd for $C_{33}H_{32}CIN_2O^+$ [(M+H)⁺], 507.2198; found, 507.2215.

(*E*)-10-(4-fluorophenyl)-8-((4-fluorophenyl)imino)-3,3,6,6-tetramethyl-9-propyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4v)

Yellow solid; Mp 120–123 °C; IR (KBr): 2961, 1640, 1512, 1381, 1234, 853 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ = 7.19 (t, *J* = 10.0 Hz, 1H, ArH), 7.11–7.17 (m, 2H, ArH), 6.96 (t, *J* = 8.0 Hz, 2H, ArH), 6.58–6.63 (m, 2H, ArH), 4.50 ((t, *J* = 5.0 Hz, 1H, CH), 1.24–2.28 (m, 12H, 6×CH₂), 0.98 (s, 3H, CH₃), 0.97 (s, 3H, CH₃), 0.91 (t, *J* = 5.0 Hz, 3H, CH₃), 0.86 (s, 3H, CH₃), 0.85 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 196.3, 163.6 (d, ¹*J* _{C-F} = 249.8 Hz), 158.8 (d, ¹*J* _{C-F} = 238.8 Hz), 151.2, 148.5, 148.4, 142.6, 135.7, 131.5, 127.0, 126.9, 126.7 (d, ³*J* _{C-F} = 8.8 Hz), 120.8, 120.7, 116.7 (d, ²*J* _{C-F} = 22.5 Hz), 116.0 (d, ²*J* _{C-F} = 22.5 Hz), 115.8 (d, ²*J* _{C-F} = 22.5 Hz), 115.3, 115.2, 114.7, 112.8, 50.5, 41.9, 41.8, 41.0, 38.0, 32.2, 31.3. 30.2, 29.9, 27.0, 26.6, 26.5, 19.2, 14.7; HRMS (ESI-TOF): *m/z* calcd for C₃₂H₃₇F₂N₂O⁺ [(M+H)⁺], 503.2868; found, 503.2865.

(*E*)-9-cyclohexyl-10-(4-fluorophenyl)-8-((4-fluorophenyl)imino)-3,3,6,6-tetramethyl-3,4,5,6,7,8,9,10-octahydroacridin-1(2*H*)-one (4w)

Yellow solid; Mp 257–259 °C; IR (KBr): 3412, 1642, 1616, 1383, 1244, 618 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.13–7.21 (m, 4H, ArH), 6.94–6.98 (m, 2H, ArH), 6.57–6.61(m, 2H, ArH), 4.54 (s, 1H, CH), 2.17–2.27 (m, 3H, CH₂), 2.05 (AB, *J* = 15.0 Hz, 1H, CH₂), 1.90–1.95 (m, 2H, CH₂), 1.72–1.82 (m, 5H, CH₂+CH), 1.58-1.66 (m, 4H, 2×CH₂), 1.06-1.21 (m, 3H, CH₂), 1.03 (s, 3H, CH₃), 0.98 (s, 3H, CH₃), 0.88 (s, 3H, CH₃), 0.86 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ = 196.6, 162.3 (d, ¹*J* _{C-F} = 248.8 Hz), 158.8 (d, ¹*J* _{C-F} = 238.8 Hz), 151.7, 148.6, 148.5, 143.0, 135.6, 131.4, 120.7, 120.6, 116.8, 116.6, 115.3, 115.1, 113.2, 111.0, 77.3, 77.0, 76.8, 50.6, 45.1, 42.1, 41.1, 31.9, 31.3, 31.2, 30.5, 27.0, 26.9, 26.8, 26.7, 26.6.

4. Copies of Original ¹H and ¹³C NMR Spectra

¹H NMR and ¹³C NMR spectra for compound **3**

Figure 1. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3a

Figure 2. ¹³C NMR (400 MHz, CDCl₃) spectra of compound 3a

Figure 3. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3b**

Figure 4. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **3b**

Figure 5. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3c**

Figure 9. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3e**

Figure 13. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3g

Figure 15. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3h**

Figure 17. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3i**

Figure 19. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3**j

Figure 20. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 3j

Figure 21. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3k**

Figure 22. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 3k

Figure 25. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3m**

Figure 29. ¹H NMR (400 MHz, CDCl₃) spectra of compound **30**

Figure 30. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **30**

Figure 31. ¹H NMR (400 MHz, CDCl₃) spectra of compound **3p**

Figure 33. ¹H NMR (400 MHz, CDCl₃) spectra of compound 3q

¹H NMR and ¹³C NMR spectra for compound 4

Figure 37. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4a

Figure 38. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4a

Figure 39. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound **4b**

Figure 42. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4c

Figure 43. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4d

Figure 44. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4d

44000000000	400000040004	000000000000000000000000000000000000000	0000000000000000
0000444400000	000	00444400000	000000000000000000000000000000000000
~~~~~~~~~~~	~~~~~~~~~	000000000000000000000000000000000000000	000777777777000











Figure 48. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4f





**Figure 50.** ¹³C NMR (100 MHz, DMSO- $d_6$ ) spectra of compound **4g** 





Figure 51. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4h


000000000000000000000000000000000000000	00440000000004-00000	00000000400700000000
VV00004444444	444400000000000000000	
<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



Figure 53. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4i





Figure 55. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4j



Figure 56. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4j



**Figure 57.** ¹H NMR (400 MHz, CDCl₃) spectra of compound **4k** 



555 555 555 555 555 555 555 555 555 55	82226 3375 3375 3375 357 357 357 357 357 357	88 88 88 88 88 88 88 88 88 88 88 88 88	23 9 8 9 0 0 0 0 0 0 1 1 2 3 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 88 77 77 77 77 77 77 75 88 88 73 73 73 73 73 73 73 73 73 73 73 73 73



**Figure 59.** ¹H NMR (400 MHz, CDCl₃) spectra of compound **4** 





Figure 61. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4m





**Figure 63.** ¹H NMR (400 MHz, DMSO- $d_6$ ) spectra of compound **4n** 











Figure 67. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4p



Figure 68. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4p













Figure 72. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4r



**Figure 73.** ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound **4s** 



**Figure 74.** ¹³C NMR (100 MHz, DMSO- $d_6$ ) spectra of compound **4s** 





Figure 75. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4t





Figure 77. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4u



$\begin{array}{c} 227\\ 211\\ 15\\ 115\\ 112\\ 113\\ 986\\ 996\\ 62\\ 62\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61\\ 61$	660 660 115 115 115 115 115 115 115 115 115 11	828 88 88 88 88 88 88 88 88 88 88 88 88	86
~~~~~~~~~~	0004000000000000		00
I I I I I I I I I I I I I I I I I I I			

Figure 79. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4v

Figure 81. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4w

5. Crystal X-ray Structures of Compound $3n^1$

Figure S77 ORTEP view of the molecular structure of compound 3n, thermal ellipsoids are drawn at 30% probability

Fable S1	Crystal data	, data collection,	and structure	refinement for	compound 3n
----------	--------------	--------------------	---------------	----------------	-------------

9,10-bis(4-chlorophenyl)-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (3n)	
Empirical formula	$C_{25} H_{21} Cl_2 N O_2$
Formula weight	438.33
Temperature	293(2) К
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P21
Unit cell dimensions	a = 8.7539(14) A alpha = 90 deg.
	b = 10.6930(17) A beta = 102.694(2) deg.
	c = 11.5682(18) A gamma = 90 deg.
Volume	1056.4(3) A^3
Z, Calculated density	2, 1.340 Mg/m^3
Absorption coefficient	0.330 mm^-1
F(000)	456
Crystal size	0.36 x 0.30 x 0.25 mm
Theta range for data collection	1.804 to 24.998 deg.
Limiting indices	-9<=h<=10, -12<=k<=12, -12<=l<=13
Reflection collected/unique	5931 / 3277 [R(int) = 0.0254]
Completeness to theta = 28.40	97.2 %
Max. and min. transmission	0.922 and 0.890
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	3277 / 1 / 272
Goodness-of-fit on F^2	0.953
Final R indices [I>2sigma(I)]	R1 = 0.0387, wR2 = 0.1013
R indices (all data)	R1 = 0.0518, wR2 = 0.1103
Largest diff. peak and hole	0.247 and -0.229 e.A^-3

6. Notes and References

(1) CCDC 1819954 which containing in the supporting information (SI) for crystallographic data of compounds **3n**. This material is available free of charge from The Cambridge Crystallographic Data Center *via* the Internet at www.ccdc.cam.ac.uk/data_request/cif.