Electronic Supporting Information

A sustainable strategy for the synthesis of bis-2-iminothiazolidin-4-ones utilizing

novel series of asymmetrically substituted bis-thioureas as viable precursors

Wael Abdelgayed Ahmed Arafa*a,b and Hamada Mohamed Ibrahimb

^aChemistry Department, College of Science, Jouf University, P.O. Box 72341, Sakaka, Aljouf, Kingdom of Saudi Arabia

^bChemistry Department, Faculty of Science, Fayoum University P.O. Box 63514, Fayoum City, Egypt

E-mail:waa00@fayoum.edu.eg

Index

No.	Content	Page No.
1.	Experimental details	S3-S11
2.	¹ H NMR of 3a	S12
3.	¹ H NMR of 3b	S13
4.	¹³ C NMR of 3b	S14
5.	¹ H NMR of 3 c	S15
6.	¹³ C NMR of 3c	S16
7.	¹ H NMR of 3d	S17
8.	¹³ C NMR of 3d	S18
9.	¹ H NMR of 5a	S19
10.	¹ H NMR of 5 b	S20
11.	¹ H NMR of 5 c	S21
12.	¹ H NMR of 6a + 7a	S22
13.	¹ H NMR of $6b + 7b$	S23
14.	¹ H NMR of $6c + 7c$	S24

15.	¹³ C NMR of $6c + 7c$	S25
16.	¹ H NMR of $6d + 7d$	S26
17.	¹ H NMR of 8a	S27
18.	¹ H NMR of 8b	S28
19.	¹ H NMR of $9a + 10a$	S29
20.	¹ H NMR of 9b + 10b	S30
21.	¹³ C NMR of 9b + 10b	S31
22.	Green Metrics Calculations	S32
23.	References	\$32

Experiments

General procedure for the synthesis of bis-thioureas (3a-d).

Isothiocyanates (1a, b, 0.5 mmol) and diamines (2a, b, 1.0 mmol) were mixed in a 25 mL round-bottomed flask. The reaction mixture was sonicated in the water bath (23 °C) of an ultrasonic cleaner, for 5 min as indicated in Table 1. After completion of the reaction (the reaction was monitored by TLC, silica gel; DCM:petroleum ether = 5:2 V/V), the reaction mixture was triturated with 2 mL chilled EtOH, and the precipitate was filtered, affording the crude product, which was purified by recrystallization from EtOH (95–97%).

1,1'-((1*R***,4***R***)-Cyclohexane-1,4-diyl)bis(3-benzylthiourea) (3a)**, colorless solid, m.p. 229–231 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.65 (b, 2H, 2NH), 7.35-7.21 (m, 12H, 2NH + Ar-H), 4.66 (d, J = 5.1, 4H, 2CH₂), 3.92 (b, 2H, cyclohexyl-H), 1.95–1.93 (m, 4H, cyclohexyl-H), 1.27–1.21 (m, 4H, cyclohexyl-H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 181.4, 139.2, 127.9, 127.4, 126.4, 51.5, 47.0, 30.5; IR (KBr, cm⁻¹): 3265, 3221 (NH), 1573 (C=C), 1262 (C=S); MS *m/z* (%): 412 (0.4), 321 (24.2), 248 (12.8), 165 (57.4), 91 (100); Anal. Calcd for C₂₂H₂₈N₄S₂: C, 64.04; H, 6.84; N, 13.58%; Found: C, 64.09; H, 6.79; N, 13.62%.

1,1'-((1*R***,4***R***)-Cyclohexane-1,4-diyl)bis(3-allylthiourea) (3b)**, pale yellow solid, m.p. 330–332 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.33 (b, 2H, 2NH), 7.27–7.25 (d, 2H, 2NH), 5.90–5.77 (m, 2H, CH₂=C*H*), 5.16–5.04 (m, 4H, CH₂=CH), 4.03 (b, 4H, CH₂–N), 3.91 (b, 2H, cyclohexyl-H), 1.92–1.90 (m, 4H, cyclohexyl-H), 1.25–1.19 (m, 4H, cyclohexyl-H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 181.1, 135.1, 115.3, 51.4, 45.7, 30.8; IR (KBr, cm⁻¹): 3237, 3211 (NH), 1569 (C=C), 1260 (C=S); MS *m/z* (%): 312 (0.1),

300 (0.2), 256 (40.4), 198 (26.9), 117 (33.4), 96 (49.7), 58 (100); Anal. Calcd for C₁₄H₂₄N₄S₂: C, 53.81; H, 7.74; N, 17.93%; Found: C, 53.77; H, 7.80; N, 17.85%.

1,1'-(1,4-Phenylenebis(methylene))bis(3-benzylthiourea) (**3c**), light yellow solid, m.p. 166–167 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.89 (b, 4H, 4NH), 7.35–7.23 (m, 14H, Ar-H), 4.66 (b, 8H, 4CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 181.5, 139.2, 137.8, 128.2, 127.3, 127.2, 126.8, 47.0, 46.8; IR (KBr, cm⁻¹): 3271, 3232 (NH), 1562 (C=C), 1250 (C=S); MS *m*/*z* (%): 434 (0.6), 343 (21.6), 252 (58.3), 104 (23.5), 91 (100); Anal. Calcd for C₂₄H₂₆N₄S₂: C, 66.33; H, 6.03; N, 12.89%; Found: C, 66.42; H, 5.95; N, 12.79%.

1,1'-(1,4-Phenylenebis(methylene))bis(3-allylthiourea) (**3d**), yellow solid, m.p. 176– 178 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.80 (b, 2H, 2NH), 7.55 (b, 2H, 2NH), 7.23 (s, 4H, Ar-H), 5.89–5.80 (m, 2H, CH₂=C*H*), 5.17–5.05 (m, 4H, CH₂=CH), 4.63 (d, *J* = 5.0 Hz, 4H, 2CH₂), 4.06 (b, 4H, CH₂–N); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 181.2, 137.8, 135.0, 127.1, 115.3, 46.7, 45.8; IR (KBr, cm⁻¹): 3267, 3224 (NH), 1562 (C=C), 1259 (C=S); MS *m/z* (%): 334(0.3), 279 (1.6), 262 (31.4), 99 (43.6), 91 (88.7), 56 (100); Anal. Calcd for C₁₆H₂₂N₄S₂: C, 57.45; H, 6.63; N, 16.75%; Found: C, 57.51; H, 6.57; N, 16.83%.

General methods for the synthesis of derivatives 5–7.

Method A:

To a solution of 1 mmol of bis-thioureas 3a-d and 10 mL of deionized water in a 50 mL round-bottom flask was added dropwise at room temperature 2 mmol of dialkyl acetylenedicarboxylate (DAADs, 4a, b) with continuous stirring. After the complete addition of DAADs, the reaction mixture was sonicated for 10 min (TLC, DCM:MeOH = 9:1 V/V); during the reaction, a solid appears in the solution. After completion of the

reaction, excess solvent was removed by filtration and the residue recrystallized from ethanol, affording the desired product as colorless to light yellow crystals.

Method B

Isothiocyanates (1a, b, 0.5 mmol) were added dropwisely to diamines (2a, b, 1.0 mmol) under ultrasonic irradiation for 5 min. To the resulted residue, 10 mL of water was added followed by dropwisely addition of 2 mmol of dialkyl acetylenedicarboxylate (DAADs, 4a, b) at room temperature. After the complete addition of DAADs, the reaction mixture was sonicated for 10 min (TLC, DCM:MeOH = 9:1 V/V); during the reaction, a solid appears in the solution. After completion of the reaction, excess solvent was removed by filtration and the residue recrystallized from ethanol, affording the desired product as colorless to light yellow crystals (88–92%).

Dimethyl 2,2'-((2*Z*,2'*Z*)-((1*R*,4*R*)-cyclohexane-1,4-diyl)bis(2-(benzylimino)-4oxothiazolidin-3-yl-5-ylidene))(2*Z*,2'*Z*)-diacetate (5a), colorless solid, m.p. 193–195 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.33–7.28 (m, 10H, Ar-H), 6.77 (s, 2H, =C*H*), 4.92 (s, 4H, 2CH₂), 3.77 (s, 8H, cyclohexyl-H + 2OC*H*₃), 1.81–1.79 (m, 4H, cyclohexyl-H), 1.56 (b, 4H, cyclohexyl-H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 166.2, 165.7, 157.4, 140.4, 139.1, 130.7, 128.0, 127.5, 126.4, 52.1, 52.0, 47.2, 30.7; IR (KBr, cm⁻¹): 1716 (C=O), 1689 (C=O), 1651 (C=N), 1624 (C=C); MS *m/z* (%): 632 (2.8), 601 (1.2), 514 (20.6), 298 (14.7), 216 (51.2), 91 (100); Anal. Calcd for C₃₂H₃₂N₄O₆S₂: C, 60.74; H, 5.10; N, 8.85%; Found: C, 60.65; H, 5.19; N, 8.80%.

Diethyl 2,2'-((2*Z*,2'*Z*)-((1*R*,4*R*)-cyclohexane-1,4-diyl)bis(2-(benzylimino)-4oxothiazolidin-3-yl-5-ylidene))(2*Z*,2'*Z*)-diacetate (5b), light yellow solid, m.p. 183–185 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.33–7.26 (m, 10H, Ar-H), 6.74 (s, 2H, =C*H*), 4.92 (s, 4H, 2CH₂), 4.24 (q, *J* = 7.12 Hz, 4H, 2OCH₂), 3.37 (s, 2H, cyclohexyl-H), 1.81–1.79 (m, 4H, cyclohexyl-H), 1.57-1.55 (m, 4H, cyclohexyl-H) 1.25 (t, *J* = 7.12 Hz, 6H, 2CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 166.0, 165.9, 157.3, 139.4, 138.0, 133.7, 128.0, 127.4, 126.3, 62.2, 52.4, 47.8, 30.4, 14.3; IR (KBr, cm⁻¹): 1717 (C=O), 1688 (C=O), 1650 (C=N), 1622 (C=C); MS *m*/*z* (%): 660 (0.2), 587 (1.9), 494 (29.2), 298 (27.5), 126 (85.1), 106 (100); Anal. Calcd for C₃₄H₃₆N₄O₆S₂: C, 61.80; H, 5.49; N, 8.48%; Found C, 61.89; H, 5.42; N, 8.54%.

Dimethyl 2,2'-((2*Z*,2'*Z*)-((1*R*,4*R*)-cyclohexane-1,4-diyl)bis(2-(allylimino)-4-oxothiazolidin-3-yl-5-ylidene))(2*Z*,2'*Z*)-diacetate (5c), light yellow solid, m.p. 197–198 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 6.77 (s, 2H, =CH), 5.99–5.87 (m, 2H, CH₂=CH), 5.18–5.05 (m, 4H, CH₂=CH), 4.34–4.32 (m, 4H, CH₂–N), 4.15 (b, 2H, cyclohexyl-H), 3.79 (s, 6H, 2OCH₃), 1.89–1.45 (m, 8H, cyclohexyl-H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 166.4, 165.9, 158.6, 139.8, 135.2, 131.9, 115.5, 52.1, 52.0, 45.8, 30.9; IR (KBr, cm⁻¹): 1719 (C=O), 1689 (C=O), 1656 (C=N), 1620 (C=C); MS *m*/*z* (%): 501 (M-CH₃O, 1.6), 414 (2.6), 374 (3.7), 263 (31.7), 112 (54.8), 69 (100); Anal. Calcd for C₂₄H₂₈N₄O₆S₂: C, 54.12; H, 5.30; N, 10.52%; Found C, 54.06; H, 5.38; N, 10.59%.

Diethyl 2,2'-((2*Z*,2'*Z*)-((1*R*,4*R*)-cyclohexane-1,4-diyl)bis(2-(allylimino)-4oxothiazolidin-3-yl-5-ylidene))(2*Z*,2'*Z*)-diacetate (5d), light yellow solid, m.p. 203–205 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 6.79 (s, 2H, =CH), 5.97–5.89 (m, 2H, CH₂=C*H*), 5.16–5.04 (m, 4H, C*H*₂=CH), 4.35–4.33 (m, 4H, C*H*₂–N), 4.13 (b, 2H, cyclohexyl-H), 4.27 (q, *J* = 7.1 Hz, 4H, 2CH₂), 1.88–1.46 (m, 8H, cyclohexyl-H) 1.33 (t, *J* = 7.2 Hz, 6H, 2CH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 166.7, 165.8, 158.3, 138.6, 135.3, 133.6, 115.4, 62.1, 51.8, 45.8, 31.0, 14.3; IR (KBr, cm⁻¹): 1720 (C=O), 1686 (C=O), 1651 (C=N), 1617 (C=C); MS *m*/*z* (%): 560 (0.8), 454 (0.5), 381 (1.6), 283 (0.9), 186 (23.5), 101 (85.7), 88 (100); Anal. Calcd for C₂₆H₃₂N₄O₆S₂: C, 55.70; H, 5.75; N, 9.99%; Found C, 55.63; H, 5.81; N, 10.14%. Dimethyl 2,2'-((2*E*,2'*E*)-((1,4-phenylenebis(methylene))bis(azanylylidene))bis(3benzyl-4-oxothiazolidine-2,5-diylidene))(2*Z*,2'*Z*)-diacetate (6a) + methyl (*Z*)-2-((*Z*)-2-(benzylimino)-3-(4-(((2*E*,5*Z*)-2-(benzylimino)-5-(2-methoxy-2-oxoethylidene)-4oxothiazolidin-3-yl)methyl)benzyl)-4-oxothiazolidin-5-ylidene)acetate (7a), light yellow solid, m.p. 195–199 °C; (Regioisomeric Mixture); ¹H NMR (400 MHz, DMSO d_6) δ (ppm): 7.29–7.18 (m, 14H, Ar-H), 6.80 (s, 1H, =C*H*), 6.79 (s, 1H, =C*H*), 4.98–4.95 (m, 4H, CH₂), 4.64–4.61 (m, 4H, CH₂), 3.78 (s, 6H, 2OCH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 166.8, 166.1, 158.5, 140.2, 139.2, 137.9, 137.8, 131.9, 127.9, 127.8, 127.4, 127.3, 127.2, 126.4, 126.3, 52.5, 47.4, 47.3, 47.0, 46.9; IR (KBr, cm⁻¹): 1716 (C=O), 1697 (C=O), 1647 (C=N), 1608 (C=C); MS *m*/*z* (%): 654 (1.6), 623 (0.8), 552 (29.4), 479 (47.1), 350 (37.2), 295 (23.7), 91 (74.8), 104 (100); Anal. Calcd for C₃₄H₃₀N₄O₆S₂: C, 62.37; H, 4.62; N, 8.56%; Found C, 62.43; H, 4.56; N, 8.62%.

Diethyl 2,2'-((2*E*,2'*E*)-((1,4-phenylenebis(methylene))bis(azanylylidene))bis(3benzyl-4-oxothiazolidine-2,5-diylidene))(2*Z*,2'*Z*)-diacetate (6b) + ethyl (*Z*)-2-((*Z*)-2-(benzylimino)-3-(4-(((2*E*,5*Z*)-2-(benzylimino)-5-(2-ethoxy-2-oxoethylidene)-4oxothiazolidin-3-yl)methyl)benzyl)-4-oxothiazolidin-5-ylidene)acetate (7b), colorless solid, m.p. 144–146 °C; (Regioisomeric Mixture); ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.31-7.18 (m, 14H, Ar-H), 6.78 (s, 1H, =C*H*), 6.77 (s, 1H, =C*H*), 4.98–4.85 (m, 4H, CH₂), 4.65–4.62 (m, 4H, CH₂), 4.24 (q, *J* = 7.08 Hz, 4H, OCH₂CH₃), 1.26 (t, *J* = 7.08 Hz, 6H, OCH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 166.9,, 166.5, 159.8, 139.3, 139.0, 137.5, 134.1, 128.0, 127.9, 127.8, 127.6, 127.5, 126.4, 126.3, 61.7, 47.9, 44.7, 14.1; IR (KBr, cm⁻¹): 1720 (C=O), 1695 (C=O), 1644 (C=N), 1611 (C=C); MS *m*/*z* (%): 683 (M + H, 0.7), 513 (0.5), 309 (0.2), 205 (58.2), 106 (89.4), 91 (100); Anal. Calcd for C₃₆H₃₄N₄O₆S₂: C, 63.33; H, 5.02; N, 8.21%; Found C, 63.40; H, 4.97; N, 8.14%.

Dimethyl 2,2'-((2E,2'E)-((1,4-phenylenebis(methylene))bis(azanylylidene))bis(3allyl-4-oxothiazolidine-2,5-diylidene))(2Z,2'Z)-diacetate (6c) + methyl (Z)-2-((Z)-2-

(allylimino)-3-(4-(((2E,5Z)-2-(allylimino)-5-(2-methoxy-2-oxoethylidene)-4-

oxothiazolidin-3-yl)methyl)benzyl)-4-oxothiazolidin-5-ylidene)acetate (7c), colorless solid, m.p. 185–187 °C; (Regioisomeric Mixture); ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.30–7.25 (m, 4H, Ar-H), 6.78 (s, 1H, =CH), 6.77 (s, 1H, =CH), 5.99–5.78 (m, 2H, CH=CH₂), 5.17–5.10 (m, 4H, CH₂=CH), 4.94–4.92 (d, 2H, Ar-CH₂), 4.64–4.61 (d, 2H, Ar-CH₂), 4.41–4.39 (m, 2H, N-CH₂CH=CH₂), 4.08–4.06 (m, 2H, N-CH₂CH=CH₂), 3.78 (d, 6H, 2OCH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 168.0, 166.1, 158.4, 138.0, 137.5, 135.5, 131.3, 127.8, 127.7, 127.5, 127.4, 120.6, 117.2, 115.6, 115.1, 114.9, 53.7, 52.5, 44.4; IR (KBr, cm⁻¹): 1712 (C=O), 1697 (C=O), 1647 (C=N), 1604 (C=C); MS *m*/*z* (%): 554 (0.3), 413 (2.8), 245 (46.8), 92 (95.4), 90 (100); Anal. Calcd for C₂₆H₂₆N₄O₆S₂: C, 56.30; H, 4.73; N, 10.10%; Found C, 56.39; H, 4.68; N, 10.21%.

Diethyl 2,2'-((2E,2'E)-((1,4-phenylenebis(methylene))bis(azanylylidene))bis(3-allyl-4-oxothiazolidine-2,5-diylidene))(2Z,2'Z)-diacetate (6d) + ethyl (Z)-2-((Z)-2-(allylimino)-3-(4-(((2E,5Z)-2-(allylimino)-5-(2-ethoxy-2-oxoethylidene)-4-

oxothiazolidin-3-yl)methyl)benzyl)-4-oxothiazolidin-5-ylidene)acetate (7d), light yellow solid, m.p. 185–187 °C; (Regioisomeric Mixture); ¹H NMR (400 MHz, DMSO d_6) δ (ppm): 7.29–7.24 (m, 4H, Ar-H), 6.75 (s, 1H, =CH), 6.74 (s, 1H, =CH), 5.99–5.79 (m, 2H, CH=CH₂), 5.16–5.09 (m, 4H, CH₂=CH), 4.94–4.91 (d, 2H, Ar-CH₂), 4.63–4.60 (d, 2H, Ar-CH₂), 4.40–4.37 (m, 2H, N-CH₂CH=CH₂), 4.27–4.20 (m, 4H, OCH₂CH₃), 4.07–4.05 (m, 2H, N-CH₂CH=CH₂), 1.28–1.23 (m, 6H, OCH₂CH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 166.8, 166.1, 159.8, 138.6, 137.7, 135.7, 135.5, 132.6, 127.6, 127.5, 115.8, 115.6, 61.5, 47.9, 45.6, 45.4, 14.2; IR (KBr, cm⁻¹): 1717 (C=O), 1689 (C=O), 1655 (C=N), 1602 (C=C); MS *m/z* (%): 553 (M – C₂H₅O, 1.3), 412 (4.9), 245 (67.2), 90 (100); Anal. Calcd for C₂₈H₃₀N₄O₆S₂: C, 57.72; H, 5.19; N, 9.62%; Found: C, 57.79; H, 5.08; N, 9.57%.

General procedures for the preparation of compounds 8–10.

Method A: from ethyl chloroacetate:

The appropriate bis-thioureas **3a–d** (1 mmol), ethyl chloroacetate (2 mmol) and sodium acetate (0.16 g, 2 mmol) were irradiated under ultrasonic in ethanol (25 mL) at 90 °C for 30 min (TLC, DCM:MeOH = 9:1 V/V). The resulting solid was filtered, dried and recrystallized from ethanol containing few drops of dioxane to afford the corresponding bis-thiazolidine derivatives **8–10**.

Method B: from chloroacetyl chloride:

To bis-thioureas **3a–d** (1 mmol) in a 10 mL round bottom flask was added chloroacetyl chloride (1.2 mmol) drop wise under ultrasonic irradiation. After complete addition of chloroacetylchloride, acetonitrile (5 mL) was added to the reaction mixture and stirred was continued for 5 min (TLC, DCM:MeOH = 9:1 V/V). The resulting solid was filtered, dried and recrystallized from ethanol containing few drops of dioxane to afford the corresponding bis-thiazolidine derivatives **8–10** (93-88%).

(2Z,2'Z)-3,3'-((1R,4R)-Cyclohexane-1,4-diyl)bis(2-(benzylimino)thiazolidin-4-one)

(8a), light yellow solid, m.p. 219–221°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 7.33– 7.22 (m, 10H, Ar-H), 4.77 (s, 4H, CH₂, *CH*₂Ph), 4.04 (s, 4H, thiazole-*CH*₂), 3.20–3.16 (m, 2H, chclohexane), 1.76–1.74 (m, 4H, chclohexane), 1.45–1.39 (m, 4H, chclohexane); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 171.3, 153.1, 138.9, 128.1, 127.5, 126.9, 53.9, 52.0, 32.1, 30.8; IR (KBr, cm⁻¹): 1716 (C=O), 1639 (C=N), 1581 (C=C); MS *m/z* (%): 492 (31.6), 419 (34.9), 287 (2.9), 205 (34.8), 106 (69.3), 81 (100); Anal. Calcd for C₂₆H₂₈N₄O₂S₂: C, 63.39; H, 5.73; N, 11.37%; Found: C, 63.43; H, 5.69; N, 11.42%.

(2Z,2'Z)-3,3'-((1R,4R)-Cyclohexane-1,4-diyl)bis(2-(allylimino)thiazolidin-4-one) (8b), light yellow solid, m.p. 157–159 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 5.82–5.73 (m, 2H, CH₂CH=CH₂), 5.11–5.05 (m, 4H, CH₂CH=CH₂), 4.19 (d, *J* = 3.7 Hz, 4H, CH₂CH=CH₂), 4.02 (s, 4H, thiazole-CH₂), 3.18–3.13 (m, 2H, chclohexane), 1.78–1.76 (m, 4H, chclohexane), 1.46–1.40 (m, 4H, chclohexane); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 171.3, 153.0, 131.7, 116.7, 54.0, 43.9, 32.1, 30.9; IR (KBr, cm⁻¹): 1720 (C=O), 1635 (C=N), 1596 (C=C); MS *m/z* (%): 392 (12.6), 284 (25..8),184 (73.2), 101 (73.9), 74 (100); Anal. Calcd for C₁₈H₂₄N₄O₂S₂: C, 55.08; H, 6.16; N, 14.27%; Found: C, 54.96; H, 6.22; N, 14.35%.

(2Z,2'Z)-2,2'-((1,4-Phenylenebis(methylene))bis(azanylylidene))bis(3-

benzylthiazolidin-4-one) (9a) + (2*Z*,2'*Z*)-3,3'-(1,4-phenylenebis(methylene))bis(2-(benzylimino)thiazolidin-4-one) (10a), light yellow solid, m.p. 165–167 °C; (Regioisomeric Mixture); ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.31–7.13 (m, 14H, ArH), 4.84–4.82 (m, 4H, CH₂), 4.45–4.42 (m, 4H, CH₂), 4.12–4.10 (m, 4H, thiazole-CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 171.2, 153.1, 139.8, 137.9, 128.0, 127.7, 127.6, 126.5, 126.4, 54.2, 54.1, 49.1, 32.3; IR (KBr, cm⁻¹): 1717 (C=O), 1630 (C=N), 1604 (C=C); MS *m*/*z* (%): 515 (M + H, 1.3), 514 (12.8), 324 (17.9), 233 (85.2), 205 (23.8), 134 (27.9), 104 (11.5), 91 (100); Anal. Calcd for C₂₈H₂₆N₄O₂S₂: C, 65.35; H, 5.09; N, 10.89%; Found: C, 65.41; H, 4.98; N, 10.79%.

(2*Z*,2'*Z*)-2,2'-((1,4-phenylenebis(methylene))bis(azanylylidene))bis(3-allylthiazolidin-4-one) (9b) + (2*Z*,2'*Z*)-3,3'-(1,4-phenylenebis(methylene))bis(2-(allylimino)thiazolidin-4-one) (10b), yellow solid, m.p. 124–126 °C; (Regioisomeric Mixture); ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.25 (m, 4H, Ar-H), 5.80–5.71 (m, 2H, CH₂CH=CH₂), 5.15–5.10 (m, 4H, CH₂CH=CH₂), 4.43–4.42 (m, 4H, CH₂), 4.26-4.25 (m, 4H, CH₂CH=CH₂), 4.07 (s, 4H, thiazole-CH₂); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 171.2, 153.0, 137.7, 131.6, 127.4, 127.0, 120.4, 116.6, 114.9, 54.1, 54.0, 43.9, 32.2; IR (KBr, cm⁻¹): 1717 (C=O), 1634 (C=N), 1591 (C=C); MS *m*/*z* (%): 414 (1.2), 332 (23.8), 304 (11.8), 205 (46.2), 105 (87.9), 91 (100); Anal. Calcd for C₂₀H₂₂N₄O₂S₂: C, 57.95; H, 5.35; N, 13.52%; Found: C, 58.04; H, 5.29; N, 13.48%.

Synthesis of derivatives 11a, b

A one-pot three component mixture of the appropriate bis-thioureas **3a**, **b** (1 mmol), ethyl chloroacetate (2 mmol), 4-chlorobenzaldehyde (2 mmol) and sodium acetate (5 mmol) were mixed in ethanol (15 mL). The reaction mixture was sonicated at 90 °C for 30 min (TLC, DCM:MeOH = 8:2 V/V). The resulting residue was filtered and recrystallized from dioxane to afford the corresponding bis-thiazolidine derivatives **11a**, **b** in 86–90% yield.

(2Z,2'Z,5'E)-3,3'-((1R,4R)-Cyclohexane-1,4-diyl)bis(2-(benzylimino)-5-((E)-4-

chlorobenzylidene)thiazolidin-4-one) (11a), yellow solid, m.p. 322–325 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 7.82 (s, 1H, C*H*=C), 7.71–7.63 (m, 8H, Ar-H), 7.39–7.26 (m, 10H, Ar-H), 4.74 (s, 4H, CH₂, C*H*₂Ph), 3.23–3.19 (m, 2H, chclohexane), 1.77–1.75 (m, 4H, chclohexane), 1.44–1.40 (m, 4H, chclohexane); IR (KBr, cm⁻¹): 1719 (C=O), 1637 (C=N), 1608 (C=C); MS *m*/*z* (%): 625 (M – C₆H₄Cl, 1.3), 521 (12.7), 306 (1.9), 125 (100); Anal. Calcd for C₄₀H₃₄Cl₂N₄O₂S₂: C, 65.12; H, 4.65; N, 7.59%; Found: C, 65.07; H, 4.70; N, 7.49%.

(2Z,2'Z,5'E)-3,3'-((1R,4R)-Cyclohexane-1,4-diyl)bis(2-(allylimino)-5-((E)-4-

chlorobenzylidene)thiazolidin-4-one) (11b), yellow solid, m.p. 302–304 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.80 (s, 1H, CH=C), 7.75–7.69 (m, 8H, Ar-H), 5.80–5.72 (m, 2H, CH₂CH=CH₂), 5.12–5.07 (m, 4H, CH₂CH=CH₂), 4.21 (m, 4H, CH₂CH=CH₂), 3.17–3.14 (m, 2H, chclohexane), 1.78–1.75 (m, 4H, chclohexane), 1.47–1.41 (m, 4H, chclohexane); IR (KBr, cm⁻¹): 1712 (C=O), 1641 (C=N), 1611 (C=C); MS *m/z* (%): 636 (0.9), 512 (26.2), 374 (12.6), 125 (100); Anal. Calcd for C₃₂H₃₀Cl₂N₄O₂S₂: C, 60.28; H, 4.74; N, 8.79%; Found: C, 60.32; H, 4.69; N, 8.68%.

¹H NMR of **3a**

¹H NMR of **3b**

¹³C NMR of **3b**

¹H NMR of **3**c

¹³C NMR of **3**c

 1 H NMR of **3d**

¹³C NMR of **3d**

¹H NMR of **5a**

¹H NMR of **5b**

¹H NMR of **5**c

¹H NMR of 6a + 7a

¹H NMR of **6b** + **7b**

¹H NMR of 6c + 7c

¹³C NMR of **6c** + **7c**

¹H NMR of 6d + 7d

¹H NMR of 8a

¹H NMR of **8b**

¹H NMR of **9a + 10a**

¹H NMR of **9b** + **10b**

¹³C NMR of **9b** + **10b**

Green Metrics Calculations^{1,2}

% Atomic Efficiency (AE) =
$$\frac{\text{Mol Wt. of desired product}}{\text{Mol Wt. of all reagents}} \times 100$$

% Carbon Efficiency (CE) = $\frac{\text{Mass of carbon in product}}{\text{Totall mass of carbon in the reactants}} \times 100$
Reaction Mass Efficiency (RME) = $\frac{\text{Mass of the isolated product}}{\text{Total mass of reactants used in the reaction}} \times 100$
E-Factor (EF) = $\frac{\text{Mass of the total waste}}{\text{Mass of the crude product}}$
Process Mass Intensity (PMI) = $\frac{\text{Total mass used in process}}{\text{Mass of product}}$

References

- 1. D. Curzons, D. J. C. Constable, D. N. Mortimer and V. L. Cunningham, *Green Chem.*, 2001, **3**, 1-6.
- 2. C. Jimenez-Gonzalez, D. J. C. Constable and C. S. Ponder, *Chem. Soc. Rev.*, 2012, **41**, 1485-1498.