A Ratiometric Fluorescence Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Supramolecular Assembly Induced Monomer-Excimer Emission Transition of a Perylene Probe

Chunhua He^{ab}, Huipeng Zhou^b*, Ejaz Hussain^{bc}, Yunyi Zhang^{bd}, Niu Niu^{bc}, Yunhui Li^a, Yuqin Ma^a*, Cong Yu^{bc}*

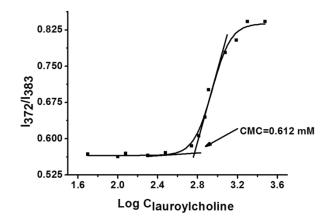
^a Changchun University of Science and Technology, No. 7989, Weixing Road, Changchun 130022, P. R. China

^b State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

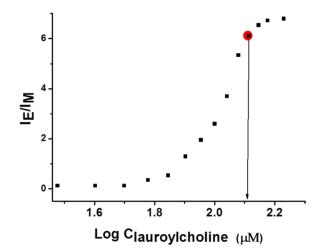
^c University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^d School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P.

R. China


*Corresponding authors

E-mail: myq9393@sina.com; congyu@ciac.ac.cn; hpzhou@ciac.ac.cn;


The inhibition efficiency

The inhibition efficiency (I_E) is given by: $IE = [I - I_i]/[I - I_0]$

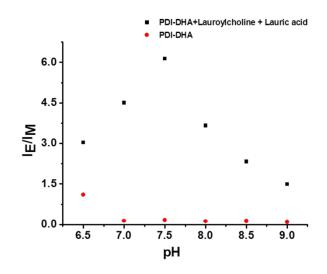

"T" is the value of I_M/I_E at 548 nm and 680 nm in the absence of inhibitor, and "I_i" is that in the presence of inhibitor. "I₀" is the ratio of I_M/I_E at 548 nm and 680 nm in the absence of AChE.

Fig. S1 Plot of the intensity ratio I_{383} / I_{372} of pyrene (from emission spectra) as a function of the logarithm concentration of lauroylcholine.

Fig. S2 The plot of I_E/I_M value of PDI-DHA (10 μ M) in lauroylcholine-lauric acid assemblies with the fixed ratio of [lauroylcholine] : [lauric acid] = 130 μ M : 300 μ M.

Fig. S3 Plot of the I_E/I_M value of PDI-DHA in the presence (black plot) and absence (red plot) of the mixture of lauroycholine (130 μ M) and lauric acid (300 μ M) under different pH values.

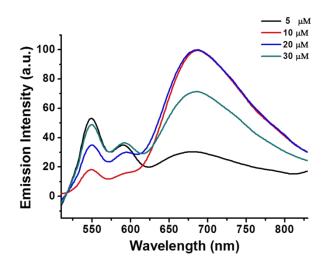
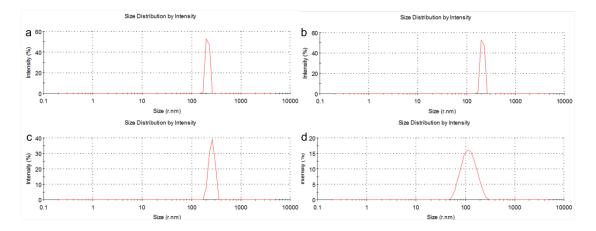
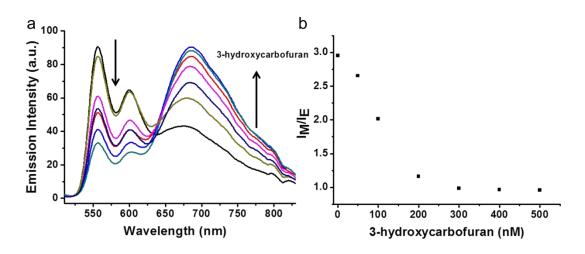




Fig. S4 Changes in emission spectrum of the sample solutions containing lauric acid (300 μ M), lauroylcholine (130 μ M), and PDI-DHA of different concentrations (5, 10, 20, 30 μ M).

Fig. S5 Dynamic light scattering results of the supramolecular assemblies, the sample mixture contained: (a) PDI-DHA (10 μ M) and lauric acid (300 μ M), (b) PDI-DHA (10 μ M) and lauroycholine (130 μ M), (c) lauroycholine (130 μ M) and lauric acid (300 μ M), (d) PDI-DHA (10 μ M), lauroycholine (130 μ M) and lauric acid (300 μ M).

Fig. S6 (a) Changes in emission spectrum of PDI-DHA (10 μ M) upon the addition of increasing concentrations of 3-hydroxycarbofuran (0 - 500 nM). Assay solutions contained 130 μ M lauroycholine and 300 μ M lauric acid, and 150 U/mL AChE. (b) Changes in I_M /I_E value with 3-hydroxycarbofuran concentration.

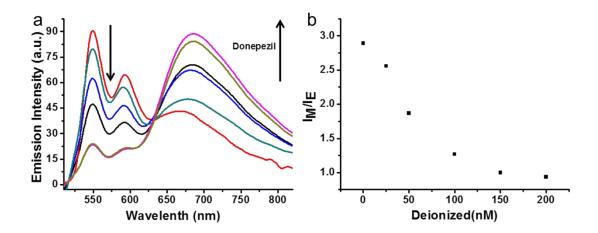


Fig. S7 (a) Changes in emission spectrum of PDI-DHA (10 μ M) upon the addition of increasing concentrations of donepezil (0 - 200 nM). Assay solutions contained 130 μ M lauroycholine and 300 μ M lauric acid, and 150 U/mL AChE. (b) Changes in I_M /I_E value with donepezil concentration.