## **Electronic supplementary information**

## The investigation of in-situ removal of Si substrates for freestanding GaN crystals by HVPE

Moonsang Lee<sup>a,\*,†</sup>, Dmitry Mikulik<sup>b,\*</sup>, and Sungsoo Park<sup>c, d, †</sup>

<sup>a</sup>Korea Basic Science Institute, Daejeon, 169-148, Republic of Korea

<sup>b</sup>Ecole Polytechnique Fédérale de Lausanne, Laboratory of Semiconductor Materials, Lausanne,

1015, Switzerland

°Jeonju University, Department of Science Education, Jeonju, 303, Republic of Korea

<sup>d</sup>Jeonju University, Analytical Laboratory of Advanced Ferroelectric Crystals, Jeonju, 303, Republic of Korea

\*These authors equally contributed to this work.

Corresponding Author: \*Ims1015@kbsi.re.kr,sspark@jj.ac.kr

To confirm the crystal quality of freestanding GaN grown using in-situ removal of a Si substrate, etch pit density (EPD) measurement was employed. EPD was evaluated after etching the freestanding GaN crystal in  $H_3PO_4$  acid solution at 200 °C during 30 min. This revealed that threading dislocation densities were evaluated about  $1 \times 10^6$ /cm<sup>2</sup>.



Fig. S1 Microscopy image of the freestanding GaN crystal using in situ removal of a Si substrate.



Fig. S2 Atomic force microscopy image of surface morphology in a 5  $\mu$ m × 5  $\mu$ m area of freestanding GaN grown from a Si substrate using in situ removal method.