(Electronic Supplementary Information)

Weavable Asymmetric Carbon Nanotube Yarn

Supercapacitor for Electronic Textiles

Changsoon Choi^{‡a,b}, Jong Woo Park^{‡a}, Keon Jung Kim^a, Duck Weon Lee^a, Mônica Jung de Andrade^c, Shi Hyeong Kim^c, Sanjeev Gambhir^d, Geoffrey M. Spinks^d, Ray H. Baughman^c and Seon Jeong Kim^{*a}

^aCenter for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea

^bDivision of Smart Textile Convergence Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea

^cThe Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA

^dIntelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia

* Corresponding author. *E-mail address:* sjk@hanyang.ac.kr (S. J. Kim)

⁺These authors contributed equally.

Key words: embedded yarn, asymmetric supercapacitor, electronic textile, carbon nanotube, reduced graphene oxide

Figure S1. Binding energy data of the 90 wt% rGO embedded CNT yarn surface (A, B) and the 70 wt% MnO₂ embedded CNT yarn surface (C, D) from x-ray photoelectron spectroscopy(XPS). In C 1s component in rGO embedded yarn, the ratio of C-C peak (284.4 eV) is majority and the effect of C-O peak is barely seen due to the vast existence of CNT bundles. However, in O 1s component, it is clearly indicated that of C-OH peak (532.2 eV). In Mn 2p component of the MnO₂ embedded yarn, the binding energy separation between the Mn $2p_{3/2}$ (642 eV) and Mn $2p_{1/2}$ (653.7 eV) peaks is 11.7 eV. Also, O 1s component shows the combination of Mn-O-Mn, Mn-O-H, H-O-H peaks.

Figure S2. The effect on cyclic voltammetry (CV) curves of increasing the amount of rGO flakes in the biscrolled anode of an asymmetric supercapacitor from 18.5 and 90.3 wt%. The counter electrode was a biscrolled yarn containing 70 wt% MnO_2 and the electrolyte was aqueous polyvinyl alcohol (PVA)-LiCl gel.

Figure S3. CV curves for different potential scan rates for (**A**) a 90 wt% rGO embedded CNT anode, (**B**) a 70 wt% MnO₂ embedded CNT cathode, and (**C**) an asymmetric supercapacitor comprising these electrodes. The CV curves of (A) and (B) were obtained for a three electrode system (with Pt mesh counter electrode and Ag/AgCl reference electrode), while the CV curves of (C) were obtained for a two electrode system comprising a 90 wt% rGO embedded anode and a 70 wt% MnO₂ embedded cathode, which were coated with and infiltrated with PVA-LiCl gel electrolyte. The electrolyte used for (A) and (B) was 0.1 M Na₂SO₄ liquid electrolyte.

Figure S4. (A) Areal and volumetric capacitance versus scan rate for an asymmetric yarn supercapacitor. (B) Capacitance retention versus potential scan rate for symmetric and asymmetric yarn supercapacitors. The asymmetric supercapacitor comprised a 90.1 wt% rGO embedded yarn anode, a 70 wt% MnO₂ embedded yarn cathode, and a PVA-LiCl based aqueous gel electrolyte. The symmetric supercapacitor used a 90.1 wt% rGO embedded yarn for both electrodes, as well as the PVA-LiCl based aqueous gel electrolyte. Both the asymmetric supercapacitors were two parallel biscrolled CNT yarns.

Figure S5. (A) CV curves (at 200 mV/s) before and after 1000 charge/discharge cycles for the asymmetric supercapacitor of fig. S3, which comprised a 90.1 wt% rGO embedded yarn anode, a 70 wt% MnO_2 embedded yarn cathode, and a PVA-LiCl based aqueous gel electrolyte. (B) capacitance retention versus number of charge/discharge cycles for the asymmetric supercapacitor of (A).

Figure S6. CV curves measured at different scan rates (10-100 mV/s) for (**A**) an asymmetric supercapacitor that uses a propylene carbonate PVDF-HFP- TEA·BF₄ organic gel electrolyte and (**B**) an otherwise nearly identical asymmetric supercapacitor that uses a PVA-LiCl aqueous gel electrolyte. The asymmetric supercapacitors contained a 90.1 wt% rGO embedded yarn anode and a 70 wt% MnO₂ embedded yarn cathode, which were electrolyte coated and plied together. PVDF-HFP is poly(vinylidenefluoride-hexafluoropropylene) and TEA·BF₄ is tetraethylammonium tetrafluouroborate.

Figure S7. (A) Photograph showing a blue LED that is powered by a textile containing a woven supercapacitor (**B**) Photograph of the blue LED 5 minutes later, when the energy on the textile supercapacitor is nearly exhausted.