Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary information

N, *N*-Dimethylformamide-stabilized palladium nanoclusters as catalyst for Larock indole synthesis

 Kaito Onishi, ^a Kei Oikawa, ^a Hiroki Yano, ^a Takeyuki Suzuki,^b and Yasushi Obora *^a
 ^a Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
 ^b Comprehensive Analysis Center, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan

E-mail: <u>obora@kansai-u.ac.jp</u>

Table of Contents

- S2: Fig. S1. IR spectrum of DMF molecules (a) and Pd NCs (b)
- S3: Table S1. Concentration of Na, K, and Pd analyzed by ICP
- S4: Fig. S2. ICP Peak profile of Na (black curve)
- S5: Fig. S3. ICP Peak profile of K (black curve)
- S6: Fig. S4. ICP Peak profile of Pd (black curve)
- S7: Fig. S5. Transmission electron microscopy images (TEM image) of aggregated Pd NCs and EDS
- S8: Fig. S6. TEM image of Pd NCs after the reactionFig. S7. EDS of Figs. 3 (a) and S6
- S9: Fig. S8. Dynamic light scattering intensity of Pd NCs.Fig. S9. Multiple catalyst-recycling. Conditions: as given in entry 14, Table 1
- S10: Table S2. Concentration of Pd analyzed by ICP in the hexane/ ethyl acetate phase
- S11: Fig. S10. Peak profile of Pd in the hexane/ ethyl acetate phase
- S12: Fig. S11. A Plausible Catalytic Cycle
 Fig. S12. IR spectrum of (a) Pd NCs before the raction; (b) Pd NCs after the reaction.
 Reference
- S13: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3a**.
- S14: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3b**.
- S15: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3c**.
- S16: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3d**.
- S17: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3e**.
- S18: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3f and 3f**'.
- S20: Copies of ¹H (400 MHz, CDCl₃) and ¹³C NMR spectra for **3g**.

Fig. S1. IR spectra of DMF molecules (a) and Pd NCs (b)

<intensity></intensity>			
element	Na	К	Pd
wave number	589.592 nm	766.491 nm	340.458 nm
Run 1	0.105796	0.000007	0.632416
Run 2	0.105259	-1.6E-05	0.626861
Run 3	0.10616	0.000037	0.636318
average	0.105738	.000009R	0.631865
R	0.000901	0.000053	0.009456
SD	0.000453	0.000026	0.004752
RSD	0.428757	281.036	0.752102
<concentration></concentration>			
element	Na	К	Pd
wave number	589.592 nm	766.491 nm	340.458 nm
unit	ppm	ppm	Ppm
Run 1	2.7186	0	3.38199
Run 2	2.70314	0	3.34839
Run 3	2.72911	0.004297	3.40559
average	2.71695	0.001432	3.37866
R	0.025975	0.004297	0.057195
SD	0.013066	0.002481	0.028743
RSD	0.480909	173.205	0.850715

Fig. S2. Peak profile of Na (black curve)

Fig. S3. Peak profile of K (black curve)

Fig. S4. Peak profile of Pd (black curve)

Fig. S5. (a) Aggregated Pd NCs in TEM image (scale bar = 100 nm), (b) Pd peak analyzed by EDS

Fig. S6. Transmission electron microscopy images (TEM image) of Pd NCs after the reaction under the conditions entry 14 of Table 1 (scale bar = 5 nm). Particle size distribution of the nanoparticles after the reaction under the conditions entry 14 of Table 1 (Fig. 3. (b)) was used TEM images of Fig. S6 and Fig.3.

Fig. S7. EDS spectral of Figs. 3(a) and S6

Fig. S8. Dynamic light scattering intensity of Pd NCs. Average Pd NCs size was 2.3 nm.

Fig. S9. Catalyst-recycling. Conditions as given in entry 14, Table 1

<intensity></intensity>	
Element	Pd
Wavenumber	340.458nm
Run 1	1.44989
Run 2	1.43035
Run 3	1.44245
Average	1.4409
R	0.019542
SD	0.009863
RSD	0.684483
<concentration></concentration>	
Element	Pd
Wavenumber	340.458nm
Unit	ppm
Run 1	6.24719
Run 2	6.15821
Run 3	6.21328
Average	6.20623
R	0.088986
SD	0.044911
RSD	0.723636

Table S2. Concentration of Pd analyzed by ICP in the hexane/ ethyl acetate phase

₩4 7° 07711	- • •				
試料選択 く前試料 次試料 マルチ データハース更新 印刷 終了					
武料名称:834 hexane EA					
Pd 2M 840.458nm					
834 hexane EA					
<u>ブランク消去</u> ビーク合わせ B.G変更 SB 検索	前元素次元素				
J	11.				

Fig. S10. Peak profile of Pd in the hexane/ ethyl acetate phase $% \mathcal{F}(\mathcal{F})$

Fig. S11. A Plausible Catalytic Cycle of Larock Indole Synthesis Catalyzed by Pd NCs1

Fig. S12. IR spectrum of (a) Pd NCs before the raction; (b) Pd NCs after the reaction.

Reference

(1) R. C. Larock, E. K. Yum and M. D. Refvik, J. Org. Chem., 1998, 63, 7652-7662.

3b

S16

S17

3f: 3f'=2:1

S20