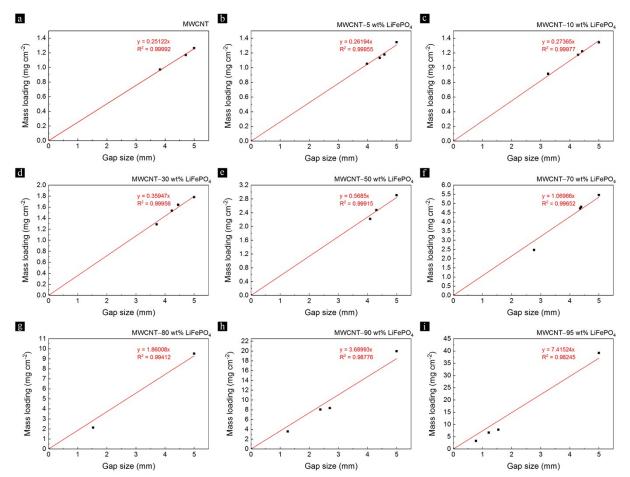
Electronic Supplementary Material

Performance optimization of freestanding MWCNT-LiFePO₄ sheets as cathodes for improved specific capacity of lithium-ion batteries


Rahmat Agung Susantyoko¹, Tawaddod Saif Alkindi¹, Amarsingh Bhabu Kanagaraj¹, Boohyun An¹, Hamda Alshibli¹, Daniel Choi¹, Sultan AlDahmani², Hamed Fadaq² and Saif Almheiri^{1,3*}

¹ Department of Mechanical Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates

² United Arab Emirates Space Agency, Space Missions' Science and Technology Directorate, P.O. Box: 7133, Abu Dhabi, United Arab Emirates

³ Division of Engineering Technology and Science, Higher Colleges of Technology, United Arab Emirates

* Corresponding author: S. Almheiri (saif.almheiri@ku.ac.ae, salmheiri@masdar.ac.ae)

Mass loading of freestanding MWCNT-LiFePO₄ sheets at different gap size:

Figure S1 The resulting mass loading at different gap size of the film applicator of (a) pristine MWCNT and (b-i) MWCNT-LiFePO₄ with (b) 5 wt% LiFePO₄, (c) 10 wt% LiFePO₄, (d) 30 wt% LiFePO₄, (e) 50 wt% LiFePO₄, (f) 70 wt% LiFePO₄, (g) 80 wt% LiFePO₄, (h) 90 wt% LiFePO₄, and (i) 95 wt% LiFePO₄.

Ball-milling treatment:

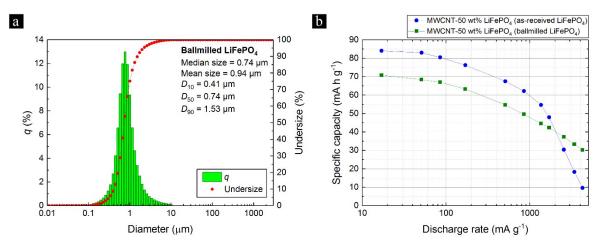


Figure S2 (a) The particle size distribution of ballmilled LiFePO₄. (b) The specific capacity at different discharge rate of MWCNT-50 wt% LiFePO₄ from as-received LiFePO₄ and ballmilled LiFePO₄ powders.

We produced ballmilled LiFePO₄ powders using ballmill machine. The ballmilled LiFePO₄ powders have a smaller median size of 0.74 µm (Figure S2a) compared to 3.55 µm of as-received LiFePO₄ powders. Figure S2b shows the effect of particle size to specific capacity of MWCNT-LiFePO₄ at a fixed LiFePO₄/MWCNT ratio of 1. The MWCNT-50 wt% LiFePO₄ from ballmilled LiFePO₄ powders shows superior specific capacity of 37.3, 33.4, 30.2 mA h g⁻¹ compared to 30.4, 18.3, 9.6 mA h g⁻¹ of sample using as-received LiFePO₄ powders, at high discharge rate of 2550, 3400, 4250 mA g⁻¹, respectively. This is attributed to small lithium-ion diffusion distance in LiFePO₄ particle. The MWCNT-50 wt% LiFePO₄ from ballmilled LiFePO₄ powders shows smaller specific capacity of 70.8 instead of 84 mA h g⁻¹ at low discharge rate of 17 mA g⁻¹. It might be due to oxidation of the high surface-to-volume-ratio particles during ballmill (non-optimized ballmilling process), which leads to a decrease in the amount of Li⁺ ions which can be exchanged and cycled. Nevertheless, we showed that the reduction in particle size leads to better performance at high discharge rate.