A series of Ln^{III}₄ clusters: Dy₄ single molecule magnet and Tb₄ multi-

responsive luminescent sensor for Fe³⁺, CrO₄²⁻/Cr₂O₇²⁻ 4-nitroaniline

Yaru Qin, Yu Ge, Shasha Zhang, Hao Sun, Yu Jing, Yahong Li* and Wei Liu

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. E-mail: <u>liyahong@suda.edu.cn</u>

Content

Fig. S1-S3 ¹ H, ¹³ C NMR and IR spectra of H ₂ L2
Table S1 Selected bond lengths and angles for 1-5
Fig. S4 PXRD patterns for 1-56
Fig. S5 IR spectra of 1-57
Table S2 Results of Continuous Shape Measures (SHAPE) calculation
Fig. S6 The Curie-Weiss law fit of 19
Fig. S7 Temperature dependence of the out-of-phase (χ'') ac susceptibility for 39
Fig. S8 The excitation and emission spectra of H_2L and emission spectra of 1-5 in solid state9
Fig. S9 Excitation spectrum and emission spectrum of 2 in solid state10
Fig. S10-S11 PXRD patterns of 2 for pH and stability experiments10
Fig. S12 SEM images and particle size distribution of 2
Fig. S13 Plots of $I_0/I-1$ and fluorescence intensity of 2 versus low concentration of
Fe ³⁺ 11
Fig. S14 The XPS spectra of 2 and 2-Fe ³⁺ 12
Fig. S15 PXRD patterns for 2 after the detection of Fe^{3+} , CrO_4^{2-} and $Cr_2O_7^{2-}$
Fig. S16 Luminescent responses of 2 towards different concentrations of CrO_4^{2-} and $Cr_2O_7^{2-}$,
respectively12
Fig. S17 Plot of $I_0/I-1$ and fluorescence intensity of 2 versus low concentration of CrO_4^{2-} and $Cr_2O_7^{2-}$
Fig. S18 Luminescent responses of 2 towards different concentrations of 4-
NA13
Fig. S19 Plot of $I_0/I-1$ and fluorescence intensity of 2 for 4-NA in low concentration
region14

Fig. S1 ¹H NMR spectrum of H_2L .

Fig. S2 13 C NMR spectrum of H₂L.

Table S1 The selected b	ond length (Å) and angle (°) for 1-5
-------------------------	---

1	Length/Å	2	Length/Å	3	Length/Å
Gd(1)-O(1)	2.310(3)	Tb(1)-O(1)	2.293(2)	Dy(1)-O(1)	2.293(2)
Gd(1)-O(3)	2.202(3)	Tb(1)-O(3)	2.181(2)	Dy(1)-O(3)	2.169(3)
Gd(1)-O(5)	2.451(3)	Tb(1)-O(5)	2.427(2)	Dy(1)-O(5)	2.405(2)
Gd(1)-O(6)	2.444(3)	Tb(1)-O(6)	2.435(2)	Dy(1)-O(6)	2.429(3)
Gd(1)-O(10)	2.368(3)	Tb(1)-O(10)	2.358(2)	Dy(1)-O(10)	2.355(3)
Gd(1)-O(11)	2.548(4)	Tb(1)-O(11)	2.533(3)	Dy(1)-O(11)	2.534(3)
Gd(1)-O(12)	2.478(4)	Tb(1)-O(12)	2.474(3)	Dy(1)-O(12)	2.455(3)
Gd(1-N(1)	2.509(4)	Tb(1)-N(1)	2.495(3)	Dy(1)-N(1)	2.491(3)
Gd(2)-O(1)	2.332(3)	Tb(2)-O(1)	2.314(2)	Dy(2)-O(1)	2.298(2)
Gd(2)-O(2)	2.586(3)	Tb(2)-O(2)	2.578(2)	Dy(2)-O(2)	2.575(3)
Gd(2)-O(5)	2.391(3)	Tb(2)-O(5)	2.379(2)	Dy(2)-O(5)	2.378(2)
Gd(2)-O(7)	2.305(3)	Tb(2)-O(7)	2.289(2)	Dy(2)-O(7)#1	2.303(2)
Gd(2)-O(7)#1	2.332(3)	Tb(2)-O(7)#1	2.312(2)	Dy(2)-O(7)	2.281(2)
Gd(2)-O(8)#1	2.634(4)	Tb(2)-O(8)#1	2.640(3)	Dy(2)-O(8)#1	2.635(3)
Gd(2)-O(9)	2.280(3)	Tb(2)-O(9)	2.258(2)	Dy(2)-O(9)	2.249(3)
Gd(2)-N(2)	2.479(5)	Tb(2)-N(2)	2.450(3)	Dy(2)-N(2)	2.443(3)
4	Length/Å	4	Length/Å	4	Length/Å
Ho(1)-O(1)	2.276(3)	Ho(1)-O(6)	2.408(3)	Ho(1)-O(12)	2.430(3)
Ho(1)-O(3)	2.167(3)	Ho(1)-O(10)	2.334(3)	Ho(1)-N(1)	2.472(4)
Ho(1)-O(5)	2.393(3)	Ho(1)-O(11)	2.519(3)	Ho(2)-O(1)	2.285(3)
Ho(2)-O(2)	2.568(3)	Ho(2)-O(5)	2.359(3)	Ho(2)-O(7)	2.268(3)
Ho(2)-O(7)#1	2.289(3)	Ho(2)-O(8)#1	2.618(3)	Ho(2)-O(9)	2.234(3)
Ho(2)-N(2)	2.429(4)				
5	Length/Å	5	Length/Å	5	Length/Å
Er(1)-O(1)	2.264(3)	Er(1)-O(10)	2.328(3)	Er(2)-O(1)	2.276(3)
Er(2)-O(7)#1	2.277(3)	Er(1)-O(3)	2.160(3)	Er(1)-O(11)	2.519(3)

Er(2)-O(2)	2.572(3)	Er(2)-O(8)#1	2.614(3)	Er(1)-O(5)	2.389(3)
Er(1)-O(12)	2.417(3)	Er(2)-O(5)	2.344(3)	Er(2)-O(9)	2.224(3)
Er(1)-O(6)	2.400(3)	Er(1)-N(1)	2.457(3)	Er(2)-O(7)	2.262(3)
Er(2)-N(2)	2.424(4)				
1	Angle/°	2	Angle/°	3	Angle/°
O(1)-Gd(1)-O(5)	73.48(11)	O(1)-Tb(1)-O(5)	73.05(8)	O(1)-Dy(1)-O(5)	72.91(8)
O(1)-Gd(1)-O(6)	138.17(12)	O(1)-Tb(1)-O(6)	138.35(8)	O(1)-Dy(1)-O(6)	138.57(9)
O(1)-Gd(1)-O(10)	84.17(12)	O(1)-Tb(1)-O(10)	84.30(9)	O(1)-Dy(1)-O(10)	84.34(9)
O(1)-Gd(1)-O(11)	134.50(12)	O(1)-Tb(1)-O(11)	134.22(9)	O(1)-Dy(1)-O(11)	134.32(9)
O(1)-Gd(1)-O(12)	87.23(12)	O(1)-Tb(1)-O(12)	86.97(9)	O(1)-Dy(1)-O(12)	87.05(9)
O(1)-Gd(1)-N(1)	75.32(13)	O(1)-Tb(1)-N(1)	75.49(9)	O(1)-Dy(1)-N(1)	75.46(10)
O(3)-Gd(1)-O(1)	127.73(12)	O(3)-Tb(1)-O(1)	128.40(9)	O(3)-Dy(1)-O(1)	127.96(10)
O(3)-Gd(1)-O(5)	146.01(12)	O(3)-Tb(1)-O(5)	146.15(9)	O(3)-Dy(1)-O(5)	146.22(9)
O(3)-Gd(1)-O(6)	85.60(12)	O(3)-Tb(1)-O(6)	84.91(9)	O(3)-Dy(1)-O(6)	85.07(9)
O(3)-Gd(1)-O(10)	79.87(13)	O(3)-Tb(1)-O(10)	80.12(9)	O(3)-Dy(1)-O(10)	79.57(9)
O(3)-Gd(1)-O(11)	76.43(13)	O(3)-Tb(1)-O(11)	75.97(9)	O(3)-Dy(1)-O(11)	76.19(10)
O(3)-Gd(1)-O(12)	122.70(13)	O(3)-Tb(1)-O(12)	122.75(9)	O(3)-Dy(1)-O(12)	123.41(10)
O(3)-Gd(1)-N(1)	72.92(13)	O(3)-Tb(1)-N(1)	73.50(9)	O(3)-Dy(1)-N(1)	73.68(10)
O(5)-Gd(1)-O(11)	108.61(12)	O(5)-Tb(1)-O(6)	66.47(8)	O(5)-Dy(1)-O(6)	66.78(8)
O(5)-Gd(1)-O(12)	79.59(12)	O(5)-Tb(1)-O(11)	108.89(9)	O(5)-Dy(1)-O(11)	109.29(9)
O(5)-Gd(1)-N(1)	140.90(12)	O(5)-Tb(1)-O(12)	79.06(9)	O(5)-Dy(1)-O(12)	78.73(9)
O(6)-Gd(1)-O(5)	65.86(11)	O(5)-Tb(1)-N(1)	140.25(9)	O(5)-Dy(1)-N(1)	139.97(9)
O(6)-Gd(1)-O(11)	70.75(12)	O(6)-Tb(1)-O(11)	70.90(9)	O(6)-Dy(1)-O(11)	70.75(9)
O(6)-Gd(1)-O(12)	94.58(13)	O(6)-Tb(1)-O(12)	94.52(9)	O(6)-Dy(1)-O(12)	94.05(10)
O(6)-Gd(1)-N(1)	145.51(13)	O(6)-Tb(1)-N(1)	145.02(9)	O(6)-Dy(1)-N(1)	144.74(10)
O(10)-Gd(1)-O(5)	76.27(12)	O(10)-Tb(1)-O(5)	76.35(8)	O(10)-Dy(1)-O(5)	76.52(9)
O(10)-Gd(1)-O(6)	77.31(12)	O(10)-Tb(1)-O(6)	77.25(9)	O(10)-Dy(1)-O(6)	77.57(9)
O(10)-Gd(1)-O(11)	141.26(12)	O(10)-Tb(1)-O(11)	141.42(9)	O(10)-Dy(1)-O(11)	141.31(9)
O(10)-Gd(1)-O(12)	155.79(13)	O(10)-Tb(1)-O(12)	155.35(9)	O(10)-Dy(1)-O(12)	155.21(9)
O(10)-Gd(1)-N(1)	123.11(13)	O(10)-Tb(1)-N(1)	123.88(9)	O(10)-Dy(1)-N(1)	123.94(10)
O(12)-Gd(1)-O(11)	50.58(12)	O(12)-Tb(1)-O(11)	50.74(9)	O(12)-Dy(1)-O(11)	51.01(9)
O(12)-Gd(1)-N(1)	75.94(13)	O(12)-Tb(1)-N(1)	75.59(9)	O(12)-Dy(1)-N(1)	75.73(10)
N(1)-Gd(1)-O(11)	78.03(13)	N(1)-Tb(1)-O(11)	77.25(9)	N(1)-Dy(1)-O(11)	76.95(10)
O(1)-Gd(2)-O(2)	64.51(11)	O(1)-Tb(2)-O(2)	64.85(8)	O(1)-Dy(2)-O(2)	65.13(9)
O(1)-Gd(2)-O(5)	74.22(11)	O(1)-Tb(2)-O(5)	73.58(8)	O(1)-Dy(2)-O(5)	73.33(8)
O(1)-Gd(2)-O(7)#1	89.14(12)	O(1)-Tb(2)-O(8)#1	76.58(8)	O(1)-Dy(2)-O(7)#1	88.98(9)
O(1)-Gd(2)-O(8)#1	76.69(11)	O(1)-Tb(2)-N(2)	150.82(9)	O(1)-Dy(2)-O(8)#1	76.44(9)
O(1)-Gd(2)-N(2)	151.17(13)	O(2)-Tb(2)-O(8)#1	120.96(8)	O(1)-Dy(2)-N(2)	150.93(10)
O(2)-Gd(2)-O(8)#1	120.64(11)	O(5)-Tb(2)-O(2)	126.99(8)	O(2)-Dy(2)-O(8)#1	121.43(9)
O(5)-Gd(2)-O(2)	127.31(11)	O(5)-Tb(2)-O(8)#1	76.50(8)	O(5)-Dy(2)-O(2)	126.88(9)
O(5)-Gd(2)-O(8)#1	76.77(11)	O(5)-Tb(2)-N(2)	77.27(9)	O(5)-Dy(2)-O(8)#1	76.11(8)
O(5)-Gd(2)-N(2)	77.00(13)	O(7)#1-Tb(2)-O(1)	89.15(8)	O(5)-Dy(2)-N(2)	77.62(10)
O(7)-Gd(2)-O(1)	138.07(12)	O(7)-Tb(2)-O(1)	138.08(8)	O(7)-Dy(2)-O(1)	138.07(9)
O(7)-Gd(2)-O(2)	75.87(12)	O(7)#1-Tb(2)-O(2)	74.22(9)	O(7)#1-Dy(2)-O(2)	74.38(9)

O(7)#1-Gd(2)-O(2)	73.95(12)	O(7)-Tb(2)-O(2)	75.73(9)	O(7)-Dy(2)-O(2)	75.52(9)
O(7)-Gd(2)-O(5)	146.00(12)	O(7)-Tb(2)-O(5)	146.76(8)	O(7)-Dy(2)-O(5)	147.05(9)
O(7)#1-Gd(2)-O(5)	138.09(11)	O(7)#1-Tb(2)-O(5)	137.70(8)	O(7)#1-Dy(2)-O(5)	137.43(9)
O(7)-Gd(2)-O(7)#1	66.35(14)	O(7)-Tb(2)-O(7)#1	66.09(10)	O(7)-Dy(2)-O(7)#1	66.22(10)
O(7)#1-Gd(2)-O(8)#1	61.90(11)	O(7)#1-Tb(2)-O(8)#1	61.85(8)	O(7)#1-Dy(2)-O(8)#1	62.03(8)
O(7)-Gd(2)-O(8)#1	115.29(11)	O(7)-Tb(2)-O(8)#1	115.03(8)	O(7)-Dy(2)-O(8)#1	115.26(9)
O(7)-Gd(2)-N(2)	69.97(14)	O(7)#1-Tb(2)-N(2)	113.93(9)	O(7)-Dy(2)-N(2)	70.37(10)
O(7)#1-Gd(2)-N(2)	113.92(13)	O(7)-Tb(2)-N(2)	70.41(9)	O(7)#1-Dy(2)-N(2)	113.84(10)
O(9)-Gd(2)-O(1)	92.28(12)	O(9)-Tb(2)-O(1)	92.48(9)	O(9)-Dy(2)-O(1)	92.89(9)
O(9)-Gd(2)-O(2)	71.67(12)	O(9)-Tb(2)-O(2)	71.79(9)	O(9)-Dy(2)-O(2)	71.77(9)
O(9)-Gd(2)-O(5)	79.03(12)	O(9)-Tb(2)-O(5)	78.92(9)	O(9)-Dy(2)-O(5)	79.06(9)
O(9)-Gd(2)-O(7)	87.72(12)	O(9)-Tb(2)-O(7)	88.16(9)	O(9)-Dy(2)-O(7)	87.96(9)
O(9)-Gd(2)-O(7)#1	141.02(12)	O(9)-Tb(2)-O(7)#1	141.45(9)	O(9)-Dy(2)-O(7)#1	141.57(9)
O(9)-Gd(2)-O(8)#1	155.34(12)	O(9)-Tb(2)-O(8)#1	155.05(8)	O(9)-Dy(2)-O(8)#1	154.87(9)
O(9)-Gd(2)-N(2)	80.60(14)	O(9)-Tb(2)-N(2)	80.50(10)	O(9)-Dy(2)-N(2)	80.36(11)
N(2)-Gd(2)-O(2)	136.43(13)	N(2)-Tb(2)-O(2)	136.50(9)	N(2)-Dy(2)-O(2)	136.27(10)
N(2)-Gd(2)-O(8)#1	98.39(13)	N(2)-Tb(2)-O(8)#1	98.07(10)	N(2)-Dy(2)-O(8)#1	97.86(10)
4	Angle/°	4	Angle/°	4	Angle/°
O(1)-Ho(1)-O(5)	72.99(9)	O(1)-Ho(1)-O(6)	138.9(10)	O(1)-Ho(1)-O(10)	84.35(10)
O(1)-Ho(1)-O(11)	134.23(10)	O(1)-Ho(1)-O(5)	72.99(9)	O(1)-Ho(1)-O(6)	138.90(10)
O(1)-Ho(1)-O(12)	86.77(11)	O(1)-Ho(1)-N(1)	75.53(11)	O(3)-Ho(1)-O(1)	127.85(11)
O(3)-Ho(1)-O(5)	145.96(11)	O(3)-Ho(1)-O(6)	84.75(11)	O(3)-Ho(1)-O(10)	79.20(11)
O(3)-Ho(1)-O(11)	76.43(11)	O(3)-Ho(1)-O(12)	123.93(11)	O(3)-Ho(1)-N(1)	73.87(11)
O(5)-Ho(1)-O(6)	67.02(9)	O(5)-Ho(1)-O(11)	109.35(10)	O(5)-Ho(1)-O(12)	78.63(10)
O(5)-Ho(1)-N(1)	140.03(11)	O(6)-Ho(1)-O(11)	70.66(10)	O(6)-Ho(1)-O(12)	94.25(11)
O(6)-Ho(1)-N(1)	144.34(11)	O(10)-Ho(1)-O(5)	76.59(10)	O(10)-Ho(1)-O(6)	77.73(11)
O(10)-Ho(1)-O(11)	141.39(11)	O(10)-Ho(1)-O(12)	155.15(11)	O(10)-Ho(1)-N(1)	123.99(11)
O(12)-Ho(1)-O(11)	51.27(11)	O(12)-Ho(1)-N(1)	75.60(12)	N(1)-Ho(1)-O(11)	76.69(11)
O(1)-Ho(2)-O(2)	65.38(10)	O(1)-Ho(2)-O(5)	73.48(10)	O(1)-Ho(2)-O(7)#1	88.39(10)
O(1)-Ho(2)-O(8)#1	76.51(10)	O(1)-Ho(2)-N(2)	150.76(11)	O(2)-Ho(2)-O(8)#1	122.11(10)
O(5)-Ho(2)-O(2)	127.19(10)	O(5)-Ho(2)-O(8)#1	75.50(10)	O(5)-Ho(2)-N(2)	77.31(11)
O(7)-Ho(2)-O(1)	137.84(10)	O(7)-Ho(2)-O(2)	75.12(10)	O(7)#1-Ho(2)-O(2)	74.12(10)
O(7)-Ho(2)-O(5)	147.18(10)	O(7)#1-Ho(2)-O(5)	137.19(10)	O(7)-Ho(2)-O(7)#1	66.46(12)
O(7)#1-Ho(2)-O(8)#1	62.50(10)	O(7)-Ho(2)-O(8)#1	115.54(10)	O(7)-Ho(2)-N(2)	70.75(12)
O(7)#1-Ho(2)-N(2)	114.66(12)	O(9)-Ho(2)-O(1)	92.94(10)	O(9)-Ho(2)-O(2)	71.54(10)
O(9)-Ho(2)-O(7)	87.94(10)	O(9)-Ho(2)-O(7)#1	141.40(10)	O(9)-Ho(2)-O(8)#1	154.52(10)
O(9)-Ho(2)-N(2) 5	80.19(12) Angle/°	N(2)-Ho(2)-O(2) 5	135.99(12) Angle/°	N(2)-Ho(2)-O(8)#1 5	97.64(12) Angle/°
O(1)-Er(1)-O(5)	72.76(9)	O(1)-Er(1)-O(6)	138.85(9)	O(1)-Er(1)-O(10)	84.24(10) 5

O(1)-Er(1)-O(11)	134.56(10)	O(1)-Er(1)-O(12)	86.88(10)	O(1)-Er(1)-N(1)	75.87(10)
O(3)-Er(1)-O(1)	128.17(10)	O(3)-Er(1)-O(5)	145.47(10)	O(3)-Er(1)-O(6)	84.16(10)
O(3)-Er(1)-O(10)	78.79(10)	O(3)-Er(1)-O(11)	76.26(10)	O(3)-Er(1)-O(12)	124.30(10)
O(3)-Er(1)-N(1)	74.47(11)	O(5)-Er(1)-O(6)	67.24(9)	O(5)-Er(1)-O(11)	109.70(10)
O(5)-Er(1)-O(12)	78.55(10)	O(5)-Er(1)-N(1)	139.93(10)	O(6)-Er(1)-O(11)	70.65(10)
O(6)-Er(1)-O(12)	94.25(11)	O(6)-Er(1)-N(1)	144.04(10)	O(10)-Er(1)-O(5)	76.59(10)
O(10)-Er(1)-O(6)	77.67(10)	O(10)-Er(1)-O(11)	141.18(10)	O(10)-Er(1)-O(12)	155.08(10)
O(10)-Er(1)-N(1)	124.31(11)	O(12)-Er(1)-O(11)	51.57(10)	O(12)-Er(1)-N(1)	75.43(11)
N(1)-Er(1)-O(11)	76.30(11)	O(1)-Er(2)-O(2)	65.43(9)	O(1)-Er(2)-O(5)	73.41(9)
O(1)-Er(2)-O(7)#1	88.60(10)	O(1)-Er(2)-O(8)#1	76.82(9)	O(1)-Er(2)-N(2)	151.00(11)
O(2)-Er(2)-O(8)#1	122.45(9)	O(5)-Er(2)-O(2)	127.27(9)	O(5)-Er(2)-O(8)#1	75.27(9)
O(5)-Er(2)-N(2)	77.63(11)	O(7)-Er(2)-O(1)	137.73(10)	O(7)-Er(2)-O(2)	74.96(10)
O(7)#1-Er(2)-O(2)	74.19(10)	O(7)-Er(2)-O(5)	147.38(10)	O(7)#1-Er(2)-O(5)	137.14(9)
O(7)-Er(2)-O(7)#1	66.24(12)	O(7)#1-Er(2)-O(8)#1	62.70(9)	O(7)-Er(2)-O(8)#1	115.46(9)
O(7)-Er(2)-N(2)	70.62(11)	O(7)#1-Er(2)-N(2)	114.29(11)	O(9)-Er(2)-O(1)	92.77(10)
O(9)-Er(2)-O(2)	71.29(10)	O(9)-Er(2)-O(5)	79.56(10)	O(9)-Er(2)-O(7)	87.92(10)
O(9)-Er(2)-O(7)#1	141.19(10)	O(9)-Er(2)-O(8)#1	154.58(10)	O(9)-Er(2)-N(2)	80.46(11)
N(2)-Er(2)-O(2)	135.78(11)	N(2)-Er(2)-O(8)#1	97.37(11)		

Symmetry transformation: #1 -X, 2-Y, 1-Z for 1, #1 2-X, -Y, 1-Z for 2-5

Fig. S5 IR spectra of **1**(a), **2**(b), **3**(c), **4**(d), **5**(e).

Table S2. Agreement factor between the coordination polyhedron of the Ln^{III} and the various ideal polyhedralcalculated by the SHAPE program

	•		-						
	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JBTPR-8	BTPR-8	JSD-8	TT-8
Gd1	14.779,	8.898,	1.686,	2.836,	14.348,	2.716,	1.948	5.147	9.501,
Gd2,	14.482,	11.904,	3.123,	2.877,	11.858,	2.745,	2.428	4.685	12.131
Tb1	14.941,	8.967,	1.635,	2.787,	14.521,	2.674,	1.858	5.070	9.572
Tb2	14.587,	11.972,	3.095,	2.913,	11.953,	2.721,	2.435	4.625	12.156
Dy1,	15.029,	9.008,	1.635,	2.709,	14.552,	2.604,	1.787	4.952	9.590
Dy2,	14.735,	12.056,	3.038,	2.904,	12.026,	2.668,	2.416	4.549	12.224
Ho1	15.177,	9.091,	1.567,	2.688,	14.556,	2.534,	1.741,	4.917	9.670
Ho2,	14.872,	12.189,	2.967,	2.924,	11.996,	2.572,	2.313	4.515	12.306
Er1	15.298,	9.127,	1.525,	2.645,	14.588,	2.447,	1.685	4.823	9.686
Er2	14.918	12.242	2.990	2.925	12.031	2.566	2.323	4.478	12.406
1 HBP	/- 8	Hexagonal l	bipyramid		D	06h			
2 CU-8	;	Cube			C)h			
3 SAPF	₹-8	Square anti	prism		[D4d			
4 TDD-	-8	Triangular o	dodecahedr	on	[D2d			
5 JGBF	-8	Johnson – G	yrobifastigi	um (J26)	C	02d			

6 JBTP-8	Johnson – Biaugmented trigonal prism (J50)	C2v
7 BTPR-8	Biaugmented trigonal prism	C2v
8 JSD-8	Snub disphenoid (J84)	D2d
9 TT-8	Triakis tetrahedron	Td

Fig. S6 Plot of $1/\chi_M$ versus 7 for 1, the linear fit is the Curie-Weiss law fit at 1 kOe field.

Fig. S7 Temperature dependence of the out-of-phase (χ'') ac susceptibility for 3 under zero dc field at 1000

Fig. S8 (a) The excitation and emission spectra of H₂L ligand. (b) Emission spectra of 1-5 in solid state at room temperature.

Fig. S9 Excitation spectrum (a) and emission spectrum (b) of 2 in solid state at room temperature.

Fig. S10 PXRD patterns for the simulated and experimental samples of 2 soaked in aqueous solutions with pH values in the range of 3-14 for two days.

Fig. S11 PXRD patterns for the simulated and experimental samples of 2 soaked in water for 2 days and 14 days.

(c)

Fig. S12 SEM images (left) and particle size distributions of 2 (right) after being sonicated for 8 (a), 15 (b) and 30 (c) minutes.

Fig. S13 (a) Stern-Volmer plot of $I_0/I-1$ versus low Fe³⁺ concentration in the aqueous suspension of **2**. (b) Linear region of fluorescence intensity for the suspensions of **2** in water upon incremental addition of Fe³⁺ solutions.

Fig. S14 Comparison of XPS spectra of 2 before (black) and after (red) its immersion in the Fe³⁺ aqueous solution.

Fig. S15 PXRD patterns for **2** after the detection of Fe^{3+} , CrO_4^{2-} and $Cr_2O_7^{2-}$ ions.

Fig. S16 Luminescent responses of a water suspension of **2** (2 mg/2 mL) towards different concentrations of (a) CrO_4^{2-} ions (2 × 10⁻³ M, 0 µL-2000 µL) and (b) $Cr_2O_7^{2-}$ (2 × 10⁻³ M, 0 µL-2000 µL).

Fig. S17 Stern-Volmer plot of $I_0/I-1$ versus low concentration of CrO_4^{2-} (a) and $Cr_2O_7^{2-}$ (b) in the aqueous suspension of **2**, and linear region of fluorescence intensity for the suspensions of **2** in water upon incremental addition of CrO_4^{2-} (c) or $Cr_2O_7^{2-}$ (d) solutions.

Fig. S18 Luminescence responses of an ethanol suspension of 2 (2 mg/2 mL) towards different concentrations of 4-NA (1×10^{-3} M, 0 μ L-2000 μ L).

Fig. S19 (a) Stern-Volmer plot of $I_0/I-1$ versus low concentration of 4-NA in the ethanol suspension of **2**. (b) Linear region of fluorescence intensity for the suspensions of **2** in ethanol upon incremental addition of 4-NA solutions.

Fig. S20 PXRD patterns for 2 after the detection of 4-NA and being soaked in ethanol for 10 days

Table S3 The	comparison of various	Ln-complexes fluorescent	sensors for Fe ³⁺ , Cr	$O_4^{2^-}$ and $Cr_2O_7^{2^-}$
--------------	-----------------------	--------------------------	-----------------------------------	---------------------------------

Ln based complexes	Analyte	Quenching constant	Detection	Solvent	Ref
		(K _{SV} , M ⁻¹)	limits		
[Tb ₄ L ₄ (NO ₃) ₂ (Piv) ₄]·2CH ₃ OH	Fe ³⁺	1.86×10^{4}	10µM	water	This
	CrO ₄ ²⁻	2.998 × 10 ³	52µM		work
	Cr ₂ O ₇ ²⁻	7.44 × 10 ³	27μΜ		
{[Tb ₂ (Ccbp) ₃ ·6H ₂ O]·3Cl ⁻ ·4H ₂ O}	Fe ³⁺	1.143 × 10 ⁵		ethanol	1
$\{[Eu(L1)(BPDC)_{1/2}(NO_3)]\cdot H_3O\}_n$	Fe ³⁺	5.16×10^{4}		DMF	2
$\{[Tb(L1)(BPDC)_{1/2}(NO_3)]\cdotH_3O\}_n$	Fe ³⁺	4.30×10^{4}		DMF	2
{[Eu(1,5-	Fe ³⁺			water	3
Nds) _{0.5} (ox)(phen)(H ₂ O)]·H ₂ O} _n					
${[Eu_2(MFDA)_2(HCOO)_2(H_2O)_6] \cdot H_2O}_n$	Fe ³⁺		0.33 μM	DMF	4
[(CH ₃) ₂ NH ₂]·[Tb(bptc)]·xsolvents	Fe ³⁺		18.01 µM	ethanol	5
[Tb(TBOT)(H ₂ O)](H ₂ O) ₄ (DMF)(NMP) _{0.5}	Fe ³⁺	5.51 × 10 ³	130 µM	water	6
	$Cr_2O_7^{2-}$	1.37×10^{4}	340 µM		
[Eu(L2)(HCOO)(H ₂ O)] _n	CrO ₄ ²⁻	1.5374× 10 ³	1.2 μM	Water	7
	Cr ₂ O ₇ ²⁻	2.7626× 10 ³	1.0 µM		
[Tb(L2)(HCOO)(H ₂ O)] _n	CrO ₄ ²⁻	1.3070× 10 ³	1.8 µM	Water	7
	$Cr_2O_7^{2-}$	2.1335× 10 ³	2.1 μM		

$[Eu_2(tpbpc)_4 \cdot CO_3 \cdot 4H_2O] \cdot DMF \cdot solvent$	CrO ₄ ²⁻	4.85×10 ³	0.33 ppm	water	8
	$Cr_2O_7^{2-}$	1.04×10 ⁴	1.07 ppm		
${[Eu_2(L3)_{1.5}(H_2O)_2EtOH] \cdot DMF}_n$	Fe ³⁺	2.942×10 ³	10 µM	DMF	9
	$Cr_2O_7^{2-}$	1.526×10 ³	10 µM		
${[Tb(TATAB)(H_2O)_2]} \cdot NMP \cdot H_2O_n$	Fe ³⁺	3667	1 µM	water	10
	$Cr_2O_7^{2-}$	11106	5 μΜ		
[Eu(Hpzbc) ₂ (NO ₃)]·H ₂ O	$Cr_2O_7^{2-}$		22 µM	ethanol	11
[Eu(HL4)(H ₂ O) ₂ (NO ₃)]·NO ₃	Fe ³⁺	4.03×10 ⁴	43µM	water	12
	$Cr_2O_7^{2-}$	7.52×10 ⁴	17µM		
[Tb(HL4)(H ₂ O) ₂ (NO ₃)]·NO ₃	Fe ³⁺	4.54×10 ⁴	16µM	water	12
	Cr ₂ O ₇ ²⁻	4.59×10^{4}	25μΜ		
[Eu(HPIDC)(m-bdc)·1.5H ₂ O] _n	$Cr_2O_7^{2-}$	4.1×10^{4}		water	13
[Tb(HPIDC)(m-bdc)·1.5H ₂ O] _n	Cr ₂ O ₇ ²⁻	6.1 × 10 ³		water	13

Ccbp⁻⁼ 4-carboxy-1-(4-carboxybenzyl)pyridinium; $H_2L1 = 2,5$ -di(pyridin-4-yl)terephthalic acid, BPDC = biphenyl-4,4'dicarboxylic acid; 1,5-Nds = 1,5-naphthalenedisulfonate disulfonate; ox = oxalate; phen = 1,10-phenanthroline; m-H₂bdc = 1,3-benzenedicarboxylic acid; H_4 bzptc = benzophenone-3,3',4',4'-tetracarboxylic acid; H_3 PIDC =2-(4-pyridyl)-1Himidazole-4,5-dicarboxylic acid; H_2 MFDA = 9,9-dimethyl-fluorene-2,7-dicarboxylic acid; H_4 bptc = tetracarboxylic acid; NMP = N-methyl-2-pyrrolidone; H_3 TBOT (2,4,6-tris[1-(3-carboxylphenoxy)ylmethyl]mesitylene); H_2L = 5-((2'-cyano-[1,1'biphenyl]-4-yl)methoxy)isophthalic acid; H_2L3 = 5,5'-(carbonylbis(azanediyl))diisophthalic acid; Htpbpc = 4'-[4,2';6',4'']terpyridin-4'-yl-biphenyl-4-carboxylic acid; H_3 TATAB = 4,4',4'-s-triazine-1,3,5- triyltri-*p*-aminobenzoate acid; H_2 pzbc = 3-(1H-pyrazol-3-yl) benzoic acid; H3DMPhIDC =2-(3,4-dimethylphenyl)-1H- imidazole-4,5-dicarboxylic acid; H_3 TATAB =4,4',4'-s-triazine-1,3,5-triyltri-m-aminobenzoic acid, H_3 PIDC = 2-(4-pyridyl)-1H- imidazole-4,5-dicarboxylic acid; m- H_2 bdc = 1,3-benzenedicarboxylic acid; DMF = N,N-dimethylformamide

Table S4 The comparisor	n of various coordin	ation complexes fluoresc	ent sensors for 4-NA
-------------------------	----------------------	--------------------------	----------------------

Coordination complex	Quenching	Detection	λex(nm)	λem(nm)	Solvent	Ref
	constant	limits				
	(K _{SV} , M ⁻¹)					
$[Tb_4L_4(NO_3)_2(Piv)_4]$ ·2CH ₃ OH	1.14×10^{4}	8.5µM	360	544	ethanol	This
						work
$[Cd_{1/2}(L5)_{1/3}(bib)_{1/2}(H_2O)]_n$	6.6×10^{4}			325	DMSO	14
${[Cd_{1/2}(HL5)_2(bibp)_2] \cdot 3H_2O}_n$	1.1×10^4			375	DMSO	14
$[Cd_{2}(H_{2}L6)_{2}(H_{2}O)_{5}]\cdot 5H_{2}O\cdot 2DMF$	1.81×10^{4}		340	480	isopropanol	15
${[Zn4(\mu 3-OH)_2(L7)(H_2O)_2] \cdot 2DMF}_n$			350	400 red-	DMF	16
				shifted		
				about 40		
				nm.		
[Zn(L8) _{0.5} (1,10-phen)(H ₂ O)]·2H ₂ O	6556		330	456	DMA	17
[Zn(L8) _{0.5} (1,10-phen)(H ₂ O)]·2H ₂ O	3955		318	396	DMA	17

 $H_3L5 = tris(p-carboxyphenyl)phosphane oxide; bib = 1,4-bis(imidazol-1-yl)benzene bibp = 4,4'-bis(imidazol- 1-yl)biphenyl; H_4L6 = 2,5-bis-(3,5-dicarboxyphenyl)thiopheneamide; H_6L7 = [1,1';4',1'']terphenyl-3,5,2',5',3'',5''-hexacarboxylic acid; H_4L8 = bis-(3,5-dicarboxyphenyl)terephthalamide; DMA = N,N-dimethylacetamide; DMSO = dimethyl sulfoxide$

References

- K.-M. Wang, L. Du, Y.-L. Ma, J.-S. Zhao, Q. Wang, T. Yan and Q.-H. Zhao, *CrystEngComm*, 2016, 18, 2690-2700.
- S2. W. Yan, C. Zhang, S. Chen, L. Han and H. Zheng, ACS Appl. Mater. Interfaces, 2017, 9, 1629-1634.
- S3. R. Li, X.-L. Qu, Y.-H. Zhang, H.-L. Han and X. Li, *CrystEngComm*, 2016, **18**, 5890-5900.
- S4. X. H. Zhou, L. Li, H. H. Li, A. Li and W. Huang, *Dalton Trans.*, 2013, **42**, 12403-12409.
- S5. X. L. Zhao, D. Tian, Q. Gao, H. W. Sun, J. Xu and X. H. Bu, *Dalton Trans.*, 2016, **45**, 1040-1046.
- M. Chen, W. -M. Xu, J. -Y. Tian, H. Cui, J.-X. Zhang, C. -S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2015-2021.
- S7. Z. Sun, M. Yang, Y. Ma and L. Li, *Cryst. Growth Des.*, 2017, **17**, 4326-4335.
- S8. J. Liu, G. Ji, J. Xiao and Z. Liu, *Inorg. Chem.*, 2017, **56**, 4197-4205.
- W. Liu, X. Huang, C. Xu, C. Chen, L. Yang, W. Dou, W. Chen, H. Yang and W. Liu, *Chem. –Eur. J.*, 2016, 22, 18769-18776.
- S10. G. X. Wen, M. L. Han, X. Q. Wu, Y. P. Wu, W. W. Dong, J. Zhao, D. S. Li and L. F. Ma, *Dalton Trans.*, 2016, 45, 15492-15499.
- S11. G. P. Li, G. Liu, Y. Z. Li, L. Hou, Y. Y. Wang and Z. Zhu, *Inorg. Chem.*, 2016, **55**, 3952-3959.
- S12. W. Gao, F. Liu, B. Y. Zhang, X. M. Zhang, J. P. Liu, E. Q. Gao and Q. Y. Gao, *Dalton Trans.*, 2017, 46, 13878-13887.
- X. H. Huang, L. Shi, S. M. Ying, G. Y. Yan, L. H. Liu, Y. Q. Sun and Y. P. Chen, *CrystEngComm*, 2018, 20, 189-197.
- S14. L. Huo, J. Zhang, L. Gao, X. Wang, L. Fan, K. Fang and T. Hu, *CrystEngComm*, 2017, **19**, 5285-5292.
- S15. F. Wang, Z. Yu, C. Wang, K. Xu, J. Yu, J. Zhang, Y. Fu, X. Li and Y. Zhao, Sen. Actuators B Chem., 2017, 239, 688-695.
- X.-Y. Wan, F.-L. Jiang, C.-P. Liu, K. Zhou, L. Chen, Y.-L. Gai, Y. Yang and M.-C. Hong, J. Mater. Chem. A, 2015, 3, 22369-22376.
- S17. F. Wang, C. Wang, Z. Yu, Q. He, X. Li, C. Shang and Y. Zhao, *RSC Adv.*, 2015, **5**, 70086-70093.