Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Bottom-Electrode Induced Defects in Self-Assembled Monolayer (SAM)-Based Tunnel Junctions affect only the SAM Resistance, not the Contact Resistance or SAM Capacitance

C. S. Suchand Sangeeth¹, Li Jiang¹, and Christian A. Nijhuis^{1,2,3*}

¹ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

² Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546

³ NUSNNI-Nanocore, National University of Singapore, Singapore 117411, Singapore

Modeling Impedance spectra: Impedance Z is a more general concept than resistance and can be expressed as 1,2

$$Z = Z' + jZ'' \tag{1}$$

where Z' and Z'' are the real and imaginary part respectively. One can express Z in polar form as

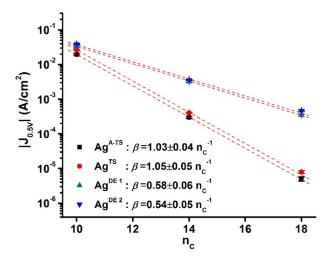
$$Z = |Z|e^{j\phi} \tag{2}$$

where |Z| is the modulus of the complex impedance and ϕ represents the phase difference which appears between the applied voltage and measured current.

Consider a simple network comprising of resistance R and capacitance C connected in parallel. In this case the complex impedance Z is given by

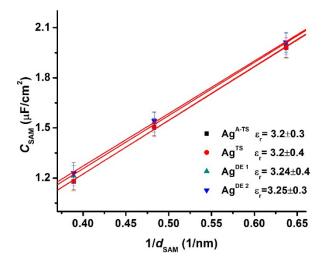
$$\frac{1}{Z} = \left(\frac{1}{R} + j\omega C\right) \tag{3}$$

The expression 3 can be separated into real and imaginary parts as,


$$Z = \left(\frac{R}{1 + j\omega RC}\right) = \left(\frac{R}{1 + \omega^2 R^2 C^2}\right) - j\left(\frac{\omega CR^2}{1 + \omega^2 R^2 C^2}\right)$$
(4)

Here ω is the angular frequency in rad/sec. Now connecting a series resistance $R_{\rm C}$, the above expression (4) gets modified to^{1,2}

$$Z = \left(R_{\rm C} + \frac{R}{1 + \omega^2 R^2 C^2}\right) - j \left(\frac{\omega C R^2}{1 + \omega^2 R^2 C^2}\right)$$
 (5)


The above scenario is shown in figure 1c in main text.

Tunneling decay coefficient: Figure S1 shows the dependence of tunneling current at 0.5 V for molecular junctions on different bottom surfaces as a function of molecular chain length. For our experiments, we only used junction that had their J(V) characteristics within one log-standard deviation from the log-mean J(V) curve which are reported in reference 3. All impedance measurements were repeated 3 times using 3 different junctions following previously reported procedures reported elsewhere.^{4, 5}. We fitted the curves using eq 1 in main text and the value of β is obtained. We note that in all impedance measurements the geometrical junction area was $9.6 \times 10^2 \, \mu m^2$.

Figure S1: The length dependence of |J| at 0.50 V for SAM-based tunneling junctions formed on different bottom surfaces.

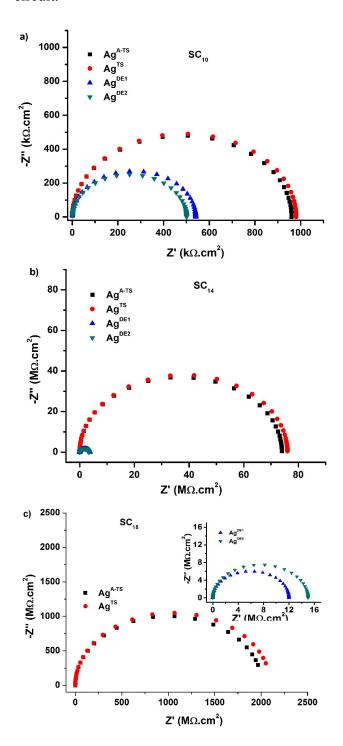
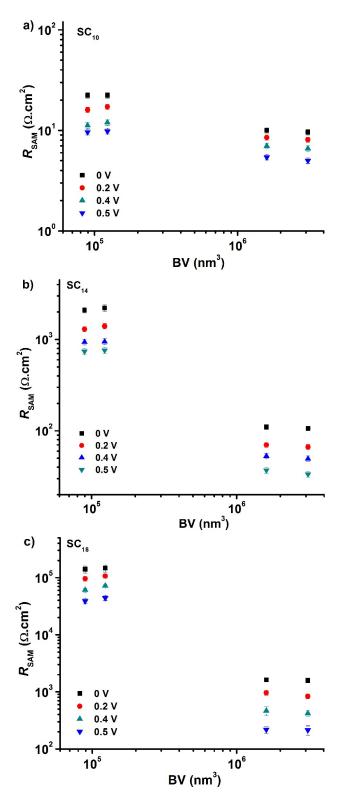

Capacitance vs 1/d: Figure S2 shows the capacitance plot as a function of 1/d. The capacitance follows the linear dependence with 1/d and fitting to eq 6 of main text. We estimated the dielectric constant of the SAMs using eq 6.

Figure S2: C_{SAM} vs. 1/d plots for SAM-based tunneling junctions formed on different bottom surfaces.


Bearing Volume calculation: To capture more detailed information of the surface topography, we use previously reported method, bearing volume (BV)³, to determine the quality of the electrode surfaces. The value of rms is determined by AFM images of 5×5 μm^2 as shown in Figure 2. We used a so-called "split and count" method³ to estimate the grain size (A_{gr}). Briefly, we divided the AFM images into small boxes and counted the number of small boxes occupied by each grain. The relative number of grains (N_{gr}) is then determined by normalization of A_{gr} to the largest grain size. We determined the width of the grain boundaries (d_{gb}) using the line-scans. We calculated the average radius of the grains (R_{gr}) by $R_{gr} = (A_{gr}/\pi)^{0.5}$. Then, the area of the grain boundary (A_{gb}) is then estimated by $A_{gb} = \pi (R_{gr} + d_{gb})^2 - \pi R_{gr}^2$. Finally, the BV is calculated using BV = $N_{gr} \times A_{gb} \times rms$.

Nyquist plots: The Nyquist plots of SAM based molecular junctions are shown in figure S3. The semi-circular plots suggest the presence of parallel RC elements in the equivalent circuit.

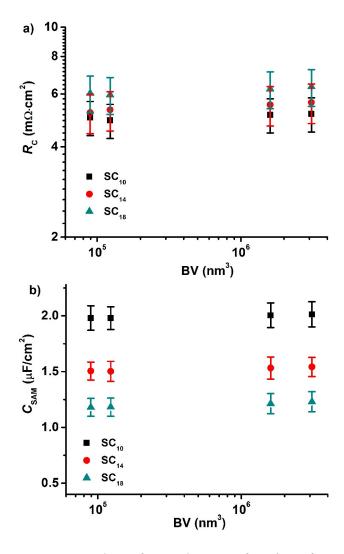


Figure S3: Nyquist plots for SAM-based tunneling junctions formed on different bottom surfaces.

Equivalent circuit parameters as a function of BV: The equivalent circuit parameters $(R_{SAM}, R_{C} \text{ and } C_{SAM})$ are presented in figure S4 and S5 as a function of BV. The capacitance and contact resistance shows no significant change with BV while R_{SAM} shows orders of magnitude change with BV for long chain molecules (SC₁₄ and SC₁₈).

Figure S4: Plots of R_{SAM} as a function of BV for junctions with SC_{10} , SC_{14} and SC_{18} SAMs.

Figure S5: Plots of $R_{\rm C}$ and $C_{\rm SAM}$ a function of BV for junctions with SC₁₀, SC₁₄ and SC₁₈ SAMs.

Table S1. Summary of surface topography of different bottom-electrodes.

Surfaces	rms (nm)	$N_{ m gr}$	$A_{\rm gb} ({\rm nm}^2)$	BV (nm ³)
Ag ^{A-TS}	0.5	1.0	1.6×10 ⁵	8×10^{4}
Ag^{TS}	0.7	1.2	1.6×10^{5}	1×10^{5}
$Ag^{\mathrm{DE},1}$	2.1	48	2.4×10^{4}	2×10^{6}
$Ag^{DE,2}$	4.8	4.6	1.2×10^{5}	3×10^{6}

Note: The values of $N_{\rm gr}$ and $A_{\rm gb}$ are taken from reference 3.

References

- J. R. Macdonald and W. B. Johnson, In *Impedance Spectroscopy*; John Wiley & Sons, Inc.: 2005, p 1.
- C. S. S. Sangeeth, A. Wan and C. A. Nijhuis, *J. Am. Chem. Soc.*, 2014, 136, 11134.
- 3. L. Yuan, L. Jiang, B. Zhang and C. A. Nijhuis, *Angew. Chem., Int. Ed.*, 2014, 53, 3377-3381.
- 4. C. S. S. Sangeeth, A. Wan and C. A. Nijhuis, Nanoscale, 2015, 7, 12061-12067.
- L. Jiang, C. S. Sangeeth and C. A. Nijhuis, *J Am Chem Soc*, 2015, 137, 10659-10667.