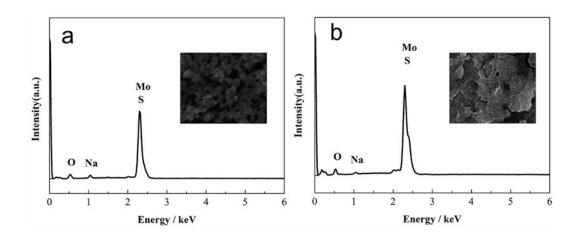
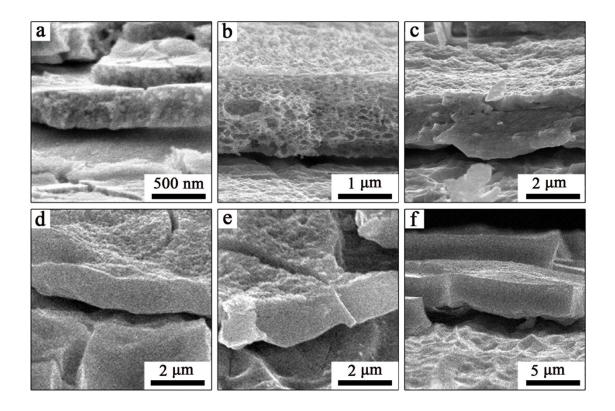
Electronic Supplementary Information


An electrochemical anodization strategy towards high-activity porous

MoS₂ electrodes for hydrogen evolution reaction


Xuerui Mao,^a Tianliang Xiao,^a Qianqian Zhang^b and Zhaoyue Liu^{*a}

^a Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China. E-mail: liuzy@buaa.edu.cn; Tel: 86-10-82317801

^b Key Laboratory of Micro-nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, P. R. China.

Figure S1. The EDX spectra of (a) nanosized particles and (b) microsized blocks. Our results confirmed the existence of Mo and S elements in particles and blocks by the overlapped characteristic peaks of Mo and S at ~2.3 keV.

Figure S2. Representative cross-sectional SEM images of MoS_2 electrodes prepared by anodization at (a) 1.5, (b) 2.5 and (c) 3.0 V for 10 min, and at 2.5 V for 5 (d), 15 (e) and 20 min (f) respectively.

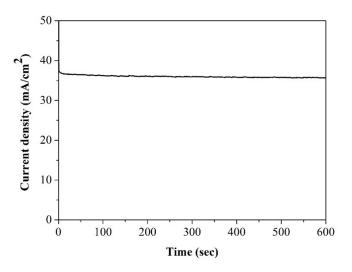
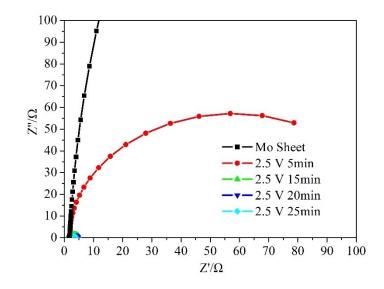



Figure S3. The stability of MoS_2 electrode prepared by anodization at 2.5 V for 15 min. The potential for HER was -0.3 V (vs. RHE). The current density (~35 mA/cm²) remains almost a constant in 600 s.

Figure S4. EIS spectra of original Mo sheet and MoS_2 electrodes at a potential of -0.2 V (vs. RHE) in 0.5 M H₂SO₄ electrolyte. MoS₂ electrodes were prepared by anodizing Mo sheet in Na₂S solution at 2.5 V for 5, 15, 20 and 25 min. The charge transfer resistance of MoS₂ electrode in HER was reduced obviously by the anodization reaction.