ARTICLE TYPE

Sol-gel synthesis of DyCrO_{3} and $10 \% \mathrm{Fe}$-doped DyCrO_{3} nanoparticles with enhanced photocatalytic hydrogen production abilities ${ }^{\dagger}$

Ragib Ahsan, ${ }^{a b}$ Avijit Mitra, ${ }^{a b}$ Saleh Omar, ${ }^{a b}$ Md. Ziaur Rahman Khan, ${ }^{a}$ and M. A. Basith ${ }^{b *}$

[^0]
Electronic supplementary information

EDS spectra

Fig. S1: EDS spectra of (a) $\operatorname{DCO}(700)$, (b) $\operatorname{DCO}(800)$, (c) $\operatorname{DFCO}(700)$, and (d) $\operatorname{DFCO}(800)$ nanoparticles

Calculation of CBM and VBM

Calculation of $\mathrm{E}_{c b}$ requires using the empirical formula ${ }^{1}$:

$$
\begin{equation*}
E_{c b}=\chi-E^{e}-0.5 E_{g} \tag{1}
\end{equation*}
$$

Here, χ is the absolute electronegativity, E^{e} is the free electron energy on hydrogen scale (approximately 4.5 eV) and E_{g} is the band gap. For compound semiconductors, χ can be calculated from the geometric mean of the absolute electronegativity of the constituent
atoms. Calculating $\mathrm{E}_{c b}$ with appropriate values of χ^{2} from equation (1), we can determine $\mathrm{E}_{v b}=\mathrm{E}_{c b}+\mathrm{E}_{g}$. Table S 1 lists these calculated values for $\mathrm{DCO}(700), \mathrm{DCO}(800), \mathrm{DFCO}(700)$, and $\mathrm{DFCO}(800)$ nanoparticles.

Table S1: Table of $\chi, \mathrm{E}_{g}, \mathrm{E}_{c b}$ and $\mathrm{E}_{c b}$ of $\operatorname{DCO}(700), \mathrm{DCO}(800), \mathrm{DFCO}(700)$, and $\operatorname{DFCO}(800)$ nanoparticles

Material	$\chi(e \mathrm{~V})$	$\mathrm{E}_{g}(\mathrm{eV})$	$\mathrm{E}_{c b}(\mathrm{eV})$	$\mathrm{E}_{c b}(\mathrm{eV})$
DCO(700)	5.4963	2.82	-0.4287	2.33213
DCO(800)	5.4963	2.72	-0.3787	2.38213
DFCO(700)	5.5048	2.45	-0.2452	2.2548
DFCO(800)	5.5048	2.33	-0.1631	2.1669

Fig. S2: Tauc plots obtained using modified Kubelka-Munk function from diffuse reflectance spectra for (a) $\mathrm{DCO}(700)$ and $\mathrm{DCO}(800)$, (b) $\mathrm{DFCO}(700)$ DFCO(800)

Fig. S3: Normalized photocatalytic hydrogen generation plotted against irradiation time for $\operatorname{DFCO}(700)$ and P 25 nanoparticles

References

1 Y. Cui, S. M. Goldup and S. Dunn, RSC Advances, 2015, 5, 30372-30379.
2 R. G. Pearson, Inorganic chemistry, 1988, 27, 734-740.

[^0]: ${ }^{\text {a }}$ Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka-1205, Bangladesh
 ${ }^{b}$ Department of Physics, Bangladesh University of Engineering and Technology, Dhaka1000, Bangladesh. Email: mabasith@phy.buet.ac.bd
 \dagger Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

