Electronic Supporting Information

Table of contents

Figure S1. Experimental (black line) and simulated from single-crystal data (red line) powder X-ray diffraction patterns for {[MnII(H2O)2]2[NbIV(CN)8]·4H2O}n (room temperature data).

Figure S2. Experimental (black line) and simulated from single-crystal data (violet line) powder X-ray diffraction patterns for ${[Fe^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8] \cdot 4H_2O}_n$ (room temperature data).

Figure S3. FT-IR spectra of $\{[Mn^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8]\cdot 4H_2O\}_n$ (red) and $\{[Fe^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8]\cdot 4H_2O\}_n$ (violet) recorded in KBr pellets with a tentative band assignment

Figure S4. Magnetization vs field measured at 2 K for ${[Fe^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8] \cdot 4H_2O}_n$ and ${[MnII(H2O)2]2[NbIV(CN)8] \cdot 4H2O}n$

Figure S5. Polynomial regression of $M(H^{-1})$ for {[Fe^{II}(H₂O)₂]₂[Nb^{IV}(CN)₈]·4H₂O}_n for $M > 6.5 \mu_B$ (details in the inset) and the resulting Ms value of 9.46 μ_B as a limit of the $M(H^{-1})$ function for $H^{-1} \rightarrow 0$.

Figure S6. Temperature dependence of magnetic entropy change of MnII-L-[NbIV(CN)₈] series, where L= imidazole (imH), pyridazine (pydz) and pyrazole.

Table S1. Values of T_{r1} and T_{r2} used for the construction of phenomenological universal curve of entropy.

Figure S1. Experimental (black line) and simulated from single-crystal data (red line) powder X-ray diffraction patterns for $\{[Mn^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8]\cdot 4H_2O\}_n$ (room temperature data).

Figure S2. Experimental (black line) and simulated from single-crystal data (violet line) powder X-ray diffraction patterns for ${[Fe^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8] \cdot 4H_2O}_n$ (room temperature data).

Figure S3. FT-IR spectra of $\{[Mn^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8]\cdot 4H_2O\}_n$ (red) and $\{[Fe^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8]\cdot 4H_2O\}_n$ (violet) recorded in KBr pellets with a tentative band assignment.

Figure S4. Magnetization vs field measured at 2 K for ${[Fe^{II}(H_2O)_2]_2[Nb^{IV}(CN)_8] \cdot 4H_2O_n}$ and ${[MnII(H_2O)_2]_2[NbIV(CN)_8] \cdot 4H_2O_n}$.

Figure S5. Polynomial regression of $M(H^{-1})$ for {[Fe^{II}(H₂O)₂]₂[Nb^{IV}(CN)₈]·4H₂O}_n for $M > 6.5 \mu_B$ (details in the inset) and the resulting Ms value of 9.46 μ_B as a limit of the $M(H^{-1})$ function for $H^{-1} \rightarrow 0$.

Figure S6. Temperature dependence of magnetic entropy change of MnII-L-[NbIV(CN)₈] series, where L= imidazole (imH), pyridazine (pydz) and pyrazole. Dot line presents the function $f(T)=A \cdot T^{-2/3}$

	MnNb		FeNb	
μ ₀ Η	T _{r1}	T _{r2}	T _{r1}	T _{r2}
[T]	[K]	[K]	[K]	[K]
0.5	46.88	51.78	40.66	47.17
1	46.59	52.95	40.23	48.28
2	46.01	54.74	39.23	50.64
3	45.51	56.01	38.36	52.90
4	45.10	57.28	37.56	54.58
5	44.50	58.50	36.94	56.13

Table S1. Values of T_{r1} and T_{r2} used for the construction of phenomenological universal curve of entropy.