Supplementary Information

for

Hypercrosslinked porous polymers hybridized with graphene oxide for water treatment: dye adsorption and degradation

Yipeng Huang^{a,1}, Guihua Ruan^{a,b,*}, Yuji Ruan^{c,1}, Wenjuan Zhang^a, Xianxian Li^a, Fuyou

Du^{a,b}, Cunjie Hu^a, Jianping Li^{a,b}

a. Colleges and Universities Key Laboratory of Food Safety and Detection, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, 541004

b. Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin,

Guangxi, 541004

c. School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515

*Corresponding author: College of Chemistry and Bioengineering, Guilin University of Technology,

Guilin, Guangxi, 541004

E-mail: guihuaruan@hotmail.com (G. Ruan)

1 These authors contributed equally.

Supplementary Figures

Fig. S1 Photograph of the PVP-GO aqueous suspension (A), and AFM image (B) and high profile (C) of the PVP-GO sheets.

Fig. S2 SEM images for showing the nanoscale to submicroscale grooves on the pore walls in the asprepared polyHIPEs/GO (a) and polyHIPEs_(NH2)/GO (b).

Fig. S3 The SEM image of the bared Ag_3PO_4 particles.

Fig. S4 Schematic illustration of the adsorption mechanism of dyes on polyHIPEs/GO and polyHIPEs $_{(NH2)}$ /GO.

Fig. S5 (a) Adsorption amount of dyes versus contact time, (b) the pseudo-second-order kinetic curves of dyes.

Fig. S6 Digital photographs of the MB, RB and EY solutions before adsorption (a), after adsorption for 14 h (b), and desorption in ethanol (c).

Fig. S7 The desorption efficiency of EY, MB and RB for the first 5 cycling time (a), and the cyclic performance of polyHIPEs/GO to MB and RB adsorption, and polyHIPEs_(NH2)/GO to EY (b).

Supplementary Tables

Sample	AAm (mg)	DVB (µL)	PVP-GO (mg)
1	0	300	10
2	50	300	10
3	100	300	10
4	100	0	10
5	100	100	10
6	100	300	10
7	100	300	0
8	100	300	5
9	100	300	10
10	100	300	15

Tab. S1 The quantity used of AAm, DVB and PVP-GO in HIPE preparation

Notes: To maintain the total volume of oil phase unchanged, the dosage of EHA is 700, 600, and 400 μ L for sample 4, 5, and 6, respectively. Other reagents for other samples are the same as described in 2.3 in the text.

polyHIPEs _(NH2) /GO							
Dye	Pseudo-second-order kinetic equation	R ²	$q_e (\mu g/g)$	k (g μg ⁻¹ h ⁻¹)			
MB	$t/q_t = 7.9977 \not {s} 10^{-4} t + 0.0028$	0.9949	1250.3	2.30 ø 10 ⁻⁴			
RB	$t/q_t = 9.4871 \not {s} 10^{-4} t + 0.0038$	0.9990	1054.1	2.38 🕅 10-4			
EY	$t/q_t = 5.0830 \wp 10^{-4} t + 0.0017$	0.9944	1967.3	1.49 \$ 10 ⁻⁴			

Tab. S2 Kinetics parameters for the adsorption of MB, RB using polyHIPEs/GO, and the adsorption of EY using

Adsorbents	Dyes	Adsorption capacity	Advantages Existing issues		Ref.
Poly(1-vinylimidazole)/	MB	1910 mg/g	High adsorption capacity	The synthesis of the sorbent is time	1
88%graphene				consuming (it takes about one week in a	
				typical procedure); the sorbent is high-	
				cost; the 2D sheets are inconvenient to	
				recycle from solutions	
Silicon/carbon/nitrogen hybrids	MB	1327.7 mg/g	High adsorption capacity	The adsorption only feasible to triphenyl	2
	Acid fuchsin	1084.5 mg/g		dyes; the powder-like sorbent is	
				inconvenient to recycle from solutions	
Polyethylenimine/33%GO	Amaranth	800 mg/g	The adsorption capacity to acidic dyes is	The adsorption to basic dyes is low; the	3
	Orange G	300 mg/g	high; the 3D sorbent is very convenient to	sorbent is high-cost and easy to collapse	
	RB	25 mg/g	recycle from solutions		
Chitosan/91%GO hydrogel	MB	350 mg/g	The sorbent shows broad-spectrum	The very high GO content make this	4
	EY	230 mg/g	adsorption ability to both cationic and	sorbent costly; the hydrogel based	
			anionic dyes	sorbent needs to preserve in water; the	
				cycling performance is questioned	
Poly(vinylbenzyl chloride-	Indigo Carmine	118 mg/g	The sorbent shows broad-spectrum	The synthesis procedure is time	5
divinylbenzene)/90%chitosan	Sunset Yellow	72 mg/g	adsorption ability to both cationic and	consuming; the hydrogel based sorbent	
hydrogel	Rhodamine 6G	78 mg/g	anionic dyes	needs to preserve in water	
PolyHIPEs/1.35%GO,	MB	1250.3 µg/g	The sorbent shows broad-spectrum	The adsorption capacity is relatively low	This
polyHIPEs(NH2)/1.35%GO	RB	1054.1 µg/g	adsorption ability to both cationic and		work
	EY	1967.3 µg/g	anionic dyes; the synthesis procedure is		
			simple; the monolithic sorbent is cost-		
			effective and ease of recycling		

Tab. S3 Comparison of the dye adsorption performances of polyHIPEs/GO and polyHIPEs_(NH2)/ GO with other reported sorbents.

Photocatalyst (dosage in mg)	Dye	Irradiation course	Degradation percentages	Time (min)	Catalytic efficiency (mol	Ref.
	(dosage in mol)	madiation source	Degradation percentages		mg ⁻¹ min ⁻¹)	
RGO/ _{95%} BiVO ₄ (100)	MB and RB (2.7 🎜 10 ⁻⁶)	300 W Xe, >400 nm	94% for MB. 87% for RB	30	8.5 6 10 ⁻¹⁰ MB,	6
					7.8 A 10 ⁻¹⁰ RB	
RGO/ _{70%} CdS (20)	RB (5.0 7 10-7)	500 W Xe	95%	80	3.0 10-10	7
RGO/90%TiO2 nanotube (20)	Malachite green oxalate	450 W Hg	80%	75	1.5 ¢ 10 ⁻⁹	Q
	(2.8 \$ 10-6)					8
RGO/99%TiO2 P25 (30)	MB (1.1 🌠 10 ⁻⁶)	100 W Hg, > 400 nm	42%	10	1.5 3 10-9	9
RGO/ _{94.4%} Ag ₃ PO ₄ (50)	MB, RB and methyl orange	350 W Xe, >420 nm	Nearly 100%	5	4.0 ¢ 10 ⁻⁹	10
	(1.0 \$ 10-6)					
$GO/_{98.2\%}Ag_3PO_4$ (20)	Acid Orange (7.1 3 10-9)	300 W Xe,	Nearly 100%	10	3.5 ¢ 10 ⁻¹¹	11
		$420 < \lambda < 630 \text{ nm}$				
$GO_{92\%}Ag_{3}PO_{4}(35)$	RB (1.7 3 10-6)	500 W Xe, >420 nm	Nearly 100%	22	2.2 \$ 10-10	12
PolyHIPEs(NH2)/4.6%RGO/		350 W Xe, >420 nm	Nearly 100%	MB: 20, RB:	1.8 ¢ 10 ⁻⁹ MB, 8.8 ¢ 10 ⁻¹⁰	This worl-
49.7%Ag3PO4 (20)	MB, KB and EY $(7.0 \ p \ 10^7)$			40, EY: 35	RB, 1.0 7 10-9 EY	THIS WOLK

Tab. S4 Comparison of the photocatalayatic activity of polyHIPEs(NH2)/RGO/Ag3PO4 with some other graphene/semiconductor composites

References

- 1 W. Zhao, Y. Tang, J. Xi and J. Kong, *Applied Surface Science*, 2015, **326**, 276-284.
- L. Meng, X. Zhang, Y. Tang, K. Su and J. Kong, *Scientific Reports*, 2015, 5, 7910.
- 3 Z.-Y. Sui, Y. Cui, J.-H. Zhu and B.-H. Han, ACS Applied Materials & Interfaces, 2013, 5, 9172-9179.
- 4 Y. Chen, L. Chen, H. Bai and L. Li, *Journal of Materials Chemistry A*, 2013, 1, 1992-2001.
- 5 d. L. M. Salzano, R. Castaldo, R. Altobelli, L. Gioiella, G. Filippone, G. Gentile and V. Ambrogi, *Carbohydrate Polymers*, 2017, **177**, 347-354.
- 6 Y. Wang, W. Wang, H. Mao, Y. Lu, J. Lu, J. Huang, Z. Ye and B. Lu, *ACS applied materials* & *interfaces*, 2014, **6**, 12698-12706.
- 7 Z. Gao, N. Liu, D. Wu, W. Tao, F. Xu and K. Jiang, *Applied Surface Science*, 2012, **258**, 2473-2478.
- 8 S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal and K. J. Balkus, *ACS Catalysis*, 2012, **2**, 949-956.
- 9 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, *ACS Nano*, 2010, 4, 380-386.
- 10 X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang and H. Tang, ACS Catalysis, 2013, 3, 363-369.
- 11 L. Liu, J. Liu and D. D. Sun, *Catalysis Science & Technology*, 2012, **2**, 2525-2532.
- 12 Q. Liang, Y. Shi, W. Ma, Z. Li and X. Yang, *Physical Chemistry Chemical Physics*, 2012, 14, 15657-15665.