Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018 Electronic Supplementary Information for Optimizing the performance of photocatalytic H₂ generation for ZnNb₂O₆ synthesized by a two-step hydrothermal method Yutong Chun,^a Mufei Yue^a Pengfei Jiang,^{ab*} Shijian Chen,^b Wenliang Gao,^a Rihong Cong,^a Tao Yang^{a*} ^a College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China ^b College of Physics, Chongqing University, Chongqing 401331, P. R. China *Corresponding authors, e-mails: pengfeijiang@cqu.edu.cn; taoyang@cqu.edu.cn. Figure S1 Structure view of ZnNb₂O₆ along the *c*-axis. Figure S2 Emission spectrum from the Hg-lamp used in our study. Figure S3 Specific surface areas for $ZnNb_2O_6$ -3D, -5D, -7D, and -9D estimated according to the BET method. Figure S4 Time-dependent photocatalytic H_2 generation data for as-synthesized $ZnNb_2O_6$ samples. Figure S5 Time-dependent photocatalytic H₂ generation data for ZnNb₂O₆-loaded with 1 wt% cocatalyst in (a) water and (b) 20 vol% methanol aqueous solution. Figure S6 Photocatalytic H_2 evolution curves of $ZnNb_2O_6$ -7D loaded with different amounts of Pt in (a) water and (b) 20 vol% methanol solution.