Supporting Information

Heteroatom-doped porous carbons derived from Moxa floss of different storage years for supercapacitors

Xuelin Zhang,^a Qingyuan Niu,^b Yaqing Guo,^b Xiyan Gao*^a and Kezheng Gao*^b

^aCollege of Acupuncture-Moxibustion and Tuina, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, P. R. China

^bState Laboratory of Surface and Interface Science and Technology, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China

*Corresponding author: Xiyan Gao: Tel: +86-371-6593-4802, FAX: +86-371-6593-4802, Email: <u>gaoxiyan@yeah.net</u> Kezheng Gao: Tel: +86-371-8656-9857, FAX: +86-371-8656-9857, Email: <u>gaokezheng@126.com</u>

Products	BET SSA	Pore volume	Average pore width
	$(m^2 g^{-1})$	$(V_{\text{total}}, \text{cm}^3 \text{ g}^{-1})$	(nm)
MC-1	1788.6	0.8170	1.8271
MC-2	1616.0	0.7834	1.9391
MC-3	1472.5	0.6476	1.7591
MC-4	1628.0	0.7058	1.7342
MC-5	1420.6	0.6578	1.8520
MC-6	1323.0	0.5761	1.7418

 Table S1 The SSA and pore structure parameters of MC.

Products	C (wt.%)	N (wt.%)	O (wt.%)
MC-1	91.72	1.58	6.70
MC-2	91.45	2.32	6.23
MC-3	90.62	1.62	7.76
MC-4	88.58	1.74	9.68
MC-5	86.25	1.75	12.00
MC-6	75.02	1.08	23.90

Table S2 Elemental analysis results of MC.

MC-3:

MC-5:

MC-6:

Figure S1 The high-resolution XPS spectra of MC2-6: (a-1~5) C1s, (b-1~5) O1s, (c-1~5) N1s.

b-2 0.5 A g⁻¹

1.0 A g

5.0 A g⁻¹ 10.0 A g 30.0 A g

500

MC-2:

MC-3:

MC-4:

Figure S2 (a-1~6) cyclic voltammetry curves at different scan rates from 5 to 200 mV s⁻¹, (b-1~6) Galvanostatic charge-discharge curves at different current densities from 0.5 to 30.0 A g⁻¹ in a two-electrode system with 6 mol L⁻¹ KOH aqueous solution electrolyte.

Carbon source	$\frac{\text{SSA}}{(\text{m}^2\text{g}^{-1})}$	Capacitance (F g ⁻¹)	Electrolyte	Measure condition	Ref.
moxa floss	1616	288.3	6 M KOH	0.25 A g ⁻¹	Our work
banana peel	1650	206	6 M KOH	$1 \mathrm{A} \mathrm{g}^{-1}$	1
waste tobacco	1104	170	6 M KOH	$0.5 \ A \ g^{-1}$	2
tobacco rods	1761	237	6 M KOH	0.5 A g ⁻¹	3
broad bean shells	655	202	6 M KOH	$0.5 \ A \ g^{-1}$	4
coconut shell	1874	268	6 M KOH	$1.0 \ A \ g^{-1}$	5
puffed rice	3326	334	6 M KOH	$0.5 \ A \ g^{-1}$	6
tobacco stem	1749	141	TEABF ₄ /AN	0.2 A g ⁻¹	7
cornstalk pith	805	116	6 M KOH	0.25 A g ⁻¹	8

Table S3 comparison of biomass-derived carbons as electrode materials of supercapacitors,

 all tested in a two-electrode configuration.

References

- Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu and D. S. Wright, J. Power Sources, 2012, 209, 152-157.
- Y. F. Sha, J. Y. Lou, S. Z. Bai, D. Wu, B. Z. Liu and Y. Ling, *Mater. Res. Bull.* 2015, 64, 327-332.
- Y. Q. Zhao, M. Lu, P. Y. Tao, Y. J. Zhang, X. T. Gong, Z. Yang, G. Q. Zhang and H. L. Li, J. Power Sources, 2016, 307, 391-400.
- 4. G. Y. Xu, J. P. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. S. Li and X. G. Zhang, *Green Chem.*,2015, 17, 1668-1674.
- L. Sun, C. G. Tian, M. T. Li, X. Y. Meng, L. Wang, R. H. Wang, J. Yin and H. G. Fu, J. Mater. Chem. A, 2013, 1, 6462-6470.
- J. H. Hou, K. Jiang, M. Tahir, X. G. Wu, F. Idrees, M. Shen and C. B. Cao, J. Power Sources, 2017, 371, 148-155.
- P. Kleszyk, P. Ratajczak, P. Skowron, J. Jagiello, Q. Abbas, E. Frackowiak and F. Béguin, *Carbon*, 2015, 81, 148-157.

 K. Z. Gao, Q. Y. Niu, Q. H. Tang, Y. Q. Guo and L. Z. Wang, J. Electron. Mater., 2018, 47, 337-346.