Novel compatibilized nylon-based ternary blends with polypropylene and poly(lactic acid): Morphology evolution and rheological behaviour in ternary blends

Amandine Codou¹, Andrew Anstey¹, Manjusri Misra^{1,2}, Amar K. Mohanty^{1,2}

¹ Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada

² School of Engineering, Thornbrough Building, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada

Corresponding authors: * Email: mohanty@uoguelph.ca (Amar K. Mohanty)

SUPPORTING INFORMATION

Supporting table:

Table S1: Heating profile for reactive extrusion.

Zone	1 (Feeding)	2	3	4	5	6	7	8	9	10	11	12 (Die)
Temperature (°C)	220	230	240	250	250	250	250	250	250	240	230	220

Supporting figure:

Figure S1: Mechanical properties and SEM micrographs at 4000x magnification of PA6/PLA/PP/MAPP ternary blends compatibilized with 2.5, 5 and 7.5 wt. % PP-g-MA