Supporting Information

For

Phosphonium acidic ionic liquid: an efficient and recyclable homogeneous catalyst for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles

Quang The Nguyen,^a Anh-Hung Thi Hang,^a Thuy-Linh Ho Nguyen,^{a,b} Duy-Khiem Nguyen Chau,^a Phuong Hoang Tran^{a*}

Department of Organic Chemistry, Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City, 721337, Viet Nam.

Center for Innovative Materials and Architectures, Vietnam National University -

Ho Chi Minh City, 721337, Viet Nam.

*To whom correspondence should be addressed: thphuong@hcmus.edu.vn (Phuong Hoang Tran)

Table of Contents

Section S1. Materials and analytical techniques	S2
Section S2. Hammett acidity function test	S2-S3
Section S3. Optimization of the catalyst	S4-S5
Section S4. Spectral data	S6-S29
Section S5. ¹ H and ¹³ C NMR spectroscopy	S30-S75
Section S5. References	S76

Section S1. Materials and analytical techniques

Chemicals and supplies

1,4-butansultone (\geq 99 %), triphenylphosphophine (\geq 99 %), *p*-toluenesulfonic acid (\geq 99 %), benzaldehyde (\geq 99 %), 4-methylbenzaldehyde (\geq 97 %), 4-*tert*-butylbenzaldehyde (\geq 98 %), 4-methoxybenzaldehyde (\geq 98 %), 4-fluorobenzaldehyde (\geq 98 %), 4-methoxybenzaldehyde (\geq 98 %), 4-fluorobenzaldehyde (\geq 98 %), 4-bromobenzaldehyde (\geq 99 %), 4-nitrobenzaldehyde (\geq 97 %), 4-bromobenzaldehyde (\geq 97 %), 4-nitrobenzaldehyde (\geq 97 %), 3-bromobenzaldehyde (\geq 97 %), 3-chlorobenzaldehyde (\geq 97 %), 2-fluorobenzaldehyde (\geq 97 %), 2-amino-4-chlorophenol (\geq 97 %), 2-amino-4-methylphenol (\geq 97 %), 2-aminothiolphenol (\geq 99 %), *o*-phenylenediamine (\geq 99.5 %), 4-nitro-*o*-phenylenediamine (\geq 98 %) were obtained from Sigma-Aldrich.

Silica gel 230 – 400 mesh for flash chromatography was obtained from HiMedia Laboratories Pvt. Ltd. (India). TLC (silica gel 60 F_{254}) was purchased from Merck. Ethyl acetate (purity \geq 99.5 %) and hexanes (\geq 95 %) were obtained from Xilong Chemical Co., Ltd (China). Chloroform-*d*, 99.8 Atom % D, stab. with Ag was obtained from Armar (Switzerland).

All starting materials, reagents, and solvents were used without further purification.

Analytical techniques

GC–MS spectra were carried out on an Agilent GC System 7890 equipped with a mass selective detector Agilent 5973N and a capillary DB–5MS column (30 m x 250 μ m x 0.25 μ m). FT-IR spectra were recorded from KBr pellets by using a Bruker Vertex 70. ¹H and ¹³C-NMR spectra were investigated on a Bruker Advance II 500 MHz. Hammett acidity function of catalyst was investigated by JASCO V-670 UV-Vis spectrophotometer.

Section S2. Hammett acidity function test

The acidity of various solutions of Brønsted-acidic IL was determined using UV/Vis spectroscopy with 4-nitrodiphenylamine (Sigma-Aldrich, ≥ 98 %) as the indicator. The anhydrous IL was dried by heating *in vacuo* at 90 °C in hour in a glove box. Under inert atmosphere, to a series of IL solutions in DI water at given concentrations were added 4-nitrodiphenylamine as the indicator whose concentration in the final solutions is constant at 5.10⁻³ mol.L⁻¹. These resulting two-component solutions were shaken for 30 min and then analyzed for the variation in the absorption curves of 4-nitrodiphenylamine at the wavelength region from 350 to 500 nm (**Figure S1**). The experimental data are summarized in **Figure S1** and **Table S1**.

The reported Hammett acidity function values (H₀) were calculated on the basis of the following equation: $H_0 = pK_a(InH^+) + log([In]/[InH^+])$, wherein $pK_a(InH^+)$ is the pK_a value corresponding to the protonated form of 4-nitrodiphenylamine (-2.38), [In] and [InH⁺] are the molar concentrations of the protonated and unprotonated forms of 4-nitrodiphenylamine indicator, respectively.

Based on the UV spectra of **Figure S1**, the quantitative data of H_0 values were obtained in the **Table S1**. The corresponding H_0 values of 5%, 6%, 7%, and 10% IL solutions were -1.40, -1.46, -1.78, and - 1.96, respectively (**Table S1**).

Figure S1. The UV/Vis spectra of 4-nitrodiphenylamine indicator measured in its cosolutions with IL at different concentration.

Table S1. Hammett function values of various concentrations of IL.

The concentration of		[In]	[InH ⁺]	п
catalyst (mol%)	A _{max}	(%)	(%)	\mathbf{H}_{0}
0	0.361	100	0	
5	0.347	96.20	3.80	-1.40
6	0.345	95.59	4.41	-1.46
7	0.329	91.22	8.78	-1.78
10	0.315	87.28	12.72	-1.96

Section S3. Optimization of the catalyst.

Table S2. The screening of catalyst for the synthesis of 2-phenylbenzoxazole

	СНО				
	NH ₂	atalyst (7 mol%)	N N		
OH 100 °C, 30 min, solvent-free					
Entry		Catalysta	Yield		
Linuy	Турс	Catalysis	(%)		
1		CuCl ₂	15		
2	11	AlCl ₃	18		
3	Homogeneous saits	FeCl ₃	17		
4		FeSO ₄	10		
5		Fe ₂ O ₃	7		
6		MgO	5		
7	Heterogenous oxides	TiO ₂	10		
8		Al_2O_3	15		
9		CuO	5		
10		HCl	20		
11		H_2SO_4	45		
12	Biolisted actus	TsOH	48		
13		CH ₃ COOH	10		
14	Proneted egidia ionia	[MIM]HSO ₄	20		
15		[1-methylpyrolidine]	HSO ₄ 17		
16	iiquids	[BMIM][BF] ₆	5		
17	Lewis acidic ionic liquid	[EMIM]FeCl ₄	10		

^{*a*}Reaction conditions: 2-aminophenol (1 mmol), benzaldehyde (1 mmol), catalyst (7 mol%) in solventfree condition at 100 °C for 30 min.

^bYield of pure compound was isolated by column chromatography (acetone/petroleum ether).

Section S4. Spectral data

Triphenyl(butyl-4-sulphonyl)phosphonium toluenesulfonate¹

IR (KBr, 4000 – 400 cm⁻¹) 3450, 3075, 2950, 1600, 1486, 1410, 1175, 1121, 1034. **¹H NMR** (500 MHz, D₂O) δ 7.76 – 7.73 (m, 3H), 7.65 – 7.73 (m, 6H), 7.62 – 7.56 (m, 14), 7.23 (d, *J* = 8.0 Hz, 3H), 3.33 – 3.17 (m, 2H), 2.78 (t, *J* = 7.5 Hz, 2H), 2.27 (s, 3H), 1.85 – 1.79 (m, 2H), 1.75 – 1.67 (m, 2H) ppm.

¹³C NMR (125 MHz, D_2O) δ 142.43, 139.48, 135.02 (d, J = 2.5 Hz), 133.51 (d, J = 10.0), 130.08 (d, J = 12.5 Hz), 129.42, 125.37, 118.33, 49.93, 25.13 (d, J = 17.5 Hz), 21.22 (d, J = 51.2 Hz), 20.73 (d, J = 3.8 Hz), 20.48 ppm.

Characterization of 2-arylbezoxazoles

2-Phenylbenzoxazole²⁻⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 102-103 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3059, 2925, 2854, 1775, 1615, 1551, 1475, 1448, 1285, 1240.

¹H NMR (500 MHz, CDCl₃): δ 8.31 – 8.22 (m, 2H), 7.82 – 7.75 (m, 1H), 7.61 – 7.56 (m, 1H), 7.55 – 7.50 (m, 3H), 7.40 – 7.33 (m, 2H) ppm.
¹³C NMR (125 MHz, CDCl₃) δ 163.2, 150.9, 142.2, 131.7, 129.0, 127.8, 127.3, 125.3, 124.7, 120.1, 110.7 ppm.

GC-MS (EI, 70 eV) *m/z*: 195 ([M]⁺).

2-(4-Methylphenyl)benzoxazole⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 113-114 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3056, 2920, 2854, 1728, 1620, 1554, 1499, 1450, 1242.

¹**H NMR** (500 MHz, CDCl₃) δ 8.16 – 8.14 (m, 2H), 7.77 – 7.74 (m, 1H), 7.58 – 7.55 (m, 1H), 7.36 – 7.32 (m, 4H), 2.44 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 163.5, 150.8, 142.3, 142.2, 129.8, 127.8, 125.1, 124.7, 124.5, 120.0, 110.6, 21.8 ppm.
GC-MS (EI, 70 eV) *m/z*: 209 ([M]⁺).

2-(4-Tert-butylphenyl)benzoxazole³

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 107-108 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3059, 2927, 1728, 1547, 1452, 1429, 1287, 1239.

¹**H NMR** (500 MHz, CDCl₃) *δ* 8.20 – 8.18 (m, 2H), 7.75 – 7.78 (m, 1H), 7.59 – 7.57 (m, 1H), 7.56 – 7.54 (m, 2H), 7.36 – 7.32 (m, 2H), 1.38 (s, 9H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 163.4, 155.4, 150.8, 142.1, 127.7, 126.1, 125.1, 124.7, 124.4, 120.0, 110.7, 35.2, 31.3 ppm.

GC-MS (EI, 70 eV) *m/z*: 251 ([M]⁺).

2-(4-Methoxyphenyl)benzoxazole⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, $mp = 103-104 \text{ }^{\circ}\text{C}$.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3050, 2924, 2849, 1615, 1501, 1450, 1420, 1244.

¹**H NMR** (500 MHz, CDCl₃) δ 8.22 – 8.18 (m, 2H), 7.75

- 7.73 (m, 1H), 7.56 - 7.54 (m, 1H), 7.35 - 7.30 (m, 2H), 7.04 - 7.01 (m, 2H), 3.89 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 163.3, 162.6, 150.8, 142.1, 129.7, 124.8, 124.7, 119.7, 119.7, 114.6, 110.6, 55.6 ppm.

GC-MS (EI, 70 eV) *m/z*: 225 ([M]⁺).

2-(4-Nitrophenyl)benzoxazole⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. Yellow solid, mp = 256 - 257 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2925, 2854, 1678, 1610, 1534, 1449, 1237.

¹**H NMR** (500 MHz, CDCl₃) δ 8.15 (dd, J = 8.0, 1.0 Hz, 1H), 7.89 (dd, J = 8.0, 1.0 Hz, 1H), 7.83 – 7.80 (m, 1H), 7.74 (td, J = 8.0, 1.0 Hz, 1H), 7.69 (td, J = 8.0, 1.0 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.42 – 7.37 (m, 2H) ppm. ¹³**C NMR** (125 MHz, CDCl₃) δ 158.9, 151.2, 141.7, 132.4, 132.0, 131.6, 126.2, 125.1, 124.3, 120.9, 111.1 ppm. **GC-MS** (EI, 70 eV) *m/z*: 240 ([M]⁺).

2-(4-Fluorophenyl)benzoxazole³

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 99 - 99.5 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3061, 2925, 1619, 1584, 1582, 1542, 1473, 1448, 1247, 1225.

¹**H NMR** (500 MHz, CDCl₃) δ 8.27 – 8.23 (m, 2H), 7.78 – 7.74 (m, 1H), 7.58 – 7.55 (m, 1H), 7.37 – 7.33 (m, 2H), 7.23 – 7.18 (m, 2H) ppm.

¹³C NMR (125 MHz, CDCl₃) $\delta \delta$ 165.0 (d, J = 251 Hz), 162.3, 150.9, 142.2, 130.0 (d, J=8.8 Hz), 130.0 (d, J = 255.1 Hz) 125.0 (d, J = 59.5 Hz), 123.7 (d, J=3.3 Hz), 120.1, 116.3 (d, J=22 Hz), 110.7 ppm. **GC-MS** (EI, 70 eV) m/z: 213 ([M]⁺)

2-(4-Chlorophenyl)benzoxazole⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 146 - 147.5 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3061, 2925, 1610, 1584, 1582, 1542, 1473, 1448, 1247, 1225.

¹H NMR (500 MHz, acetone-*d*₆) δ 8.26 – 8.23 (m, 2H), 8.27 – 8.22 (m, 2H), 7.77 (m, 1H), 7.71–7.69 (m, 1H), 7.65 – 7.63 (m, 2H), 7.46 –7.39 (m, 2H) ppm.
¹³C NMR (125 MHz, acetone-*d*₆) δ 161.7, 150.8, 142.1, 137.2, 129.3, 129.0, 125.9, 125.59, 124.8, 120.0, 110.7 ppm.
GC-MS (EI, 70 eV) *m/z*: 229 ([M]⁺).

2-(3-Fluorophenyl)benzoxazole³

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 99-100 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3073, 2925, 2855, 1591, 1552, 1480, 1448, 1341, 1269, 1242.

¹**H NMR** (500 MHz, CDCl₃): δ 8.05 – 8.04 (m, 1H), 7.96 – 7.94 (m, 1H), 7.79 – 7.77 (m, 1H), 7.59-7.58 (m, 1H), 7.51-7.47 (m, 1H), 7.38 – 7.36 (m, 2H), 7.25 – 7.21 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 163.0 (d, J = 245.5 Hz), 150.9, 142.1, 130.8 (d, J = 8.1 Hz), 129.3 (d, J = 8.5 Hz), 125.6, 124.9, 123.5 (d, J = 3 Hz), 120.4, 118.7, 118.6 (d, J = 21.3 Hz), 114.7 (d, J= 23.9 Hz), 110.8 ppm.

GC-MS (EI, 70 eV) *m/z*: 213 ([M]⁺)

2-(3-Bromophenyl)benzoxazole⁴

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 129-130 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3423, 3055, 2926, 1613, 1570, 1545, 1451, 1426, 1287, 1240.

¹**H NMR:** (500 MHz, CDCl₃): δ 8.42 (t, J = 1.5 Hz, 1H), 8.20 – 8.18 (m, 1H), 7.79 – 7.77(m, 1H), 7.67 (m, 1H), 7.66 – 7.65 (m, 1H), 7.42 – 7.37 (m, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 161.7, 151.0, 142.0, 134.6, 130.7, 130.6, 129.2, 126.3, 125.7, 125.0, 123.2, 120.4, 110.9 ppm.

GC-MS (EI, 70 eV) *m/z*: 273 ([M]⁺)

2-(2-Fluorophenyl)benzoxazole⁶

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 93-95 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3061, 2925, 1719, 1584, 1582, 1542, 1473, 1448, 1247, 1225.

¹**H** NMR (500 MHz, CDCl₃) δ 8.24 (td, J = 7.5, 2.0 Hz, 1H), 7.85 - 7.81(m, 1H), 7.63 - 7.59 (m, 1H), 7.54 - 7.49 (m, 1H), 7.41 - 7.36 (m, 2H), 7.32 - 7.25 (m, 2H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 162.0 (s), 156.0(s), 150.7 (s), 141.9 (s), 133.25 (d, J = 8.6 Hz), 130.7 (d, J = 1.1 Hz), 125.6 (s), 124.8 (s), 124.63 (d, J = 3.8 Hz), 120.52 (s), 117.32 (d, J = 21.3 Hz), 115.7 (d, J = 10.4 Hz), 110.8 (s) ppm.

GC-MS (EI, 70 eV) *m/z*: 213 ([M]⁺)

2-(2-Chlorophenyl)benzoxazole7

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 100-102 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2925, 1608, 1584, 1569, 1533, 1470, 1452, 1343, 1237, 1185.

¹**H NMR** (500 MHz, CDCl₃): δ 8.16 – 8.14 (m, 1H), 7.87 – 7.84 (m, 1H), 7.64 – 7.61 (m, 1H), 7.58 – 7.56 (m, 1H), 7.47 – 7.37 (m, 4H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 161.1, 150.8, 141.8, 133.7, 132.1, 132.0, 131.5, 127.1, 126.5, 125.7, 124.8, 120.7, 110.9 ppm.

GC-MS (EI, 70 eV) *m/z*: 229 ([M]⁺).

2-(2-Hydroxyphenyl)benzoxazole⁴

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 120-122 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2921, 2851, 1630, 1587, 1543, 1487, 1452, 1244, 1155.

¹**H NMR** (500 MHz, CDCl₃): δ 8.04 (dd, J = 8.0, 1.5 Hz, 1H), 7.74 (m, 1H), 7.63 – 7.60 (m, 1H), 7.47 – 7.42 (m, 1H), 7.41 – 7.37 (m, 2H), 7.13 (d, J = 8.5 Hz, 1H), 7.03 – 7.00 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 133.72, 127.29, 125.54, 125.17, 119.72, 119.43, 117.59, 110.82 ppm.

GC-MS (EI, 70 eV) *m/z*: 213 ([M]⁺).

2-(Pyridine-4-yl)benzoxazole⁸

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 102-104 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3460, 2946, 1628, 878.

¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, J = 5.5 Hz, 2H), 8.09 (d, J = 6.0 Hz, 2H), 7.84 - 7.80 (m, 1H), 7.63 (m, 1H), 7.42 (m, 2H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 161.0, 151.1, 150.9, 141.9, 134.6, 126.5, 125.3, 121.2, 120.9, 111.1 ppm.

GC-MS (EI, 70 eV) *m/z*: 196 ([M]⁺).

5-Methyl-2-phenylbenzoxazole³

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 112-115 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3422, 2922, 2869, 1647, 1550, 1474, 1334, 1261.

¹**H NMR** (500 MHz, acetone- d_6) δ 8.25 – 8.23 (m, 2H), 7.62 – 7.59 (m, 3H), 7.57 – 7.56 (m, 2H), 7.24 (d, J = 8.5, 1H), 2.47 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 163.3, 149.2, 142.5, 134.5, 131.5, 129.0, 127.7, 127.5, 126.4, 120.1, 110.1, 21.6 ppm.
GC-MS (EI, 70 eV) *m/z*: 209 ([M]⁺)

5-Methyl-2-(p-tolyl)benzoxazole9

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 134-136 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3304, 2921, 2856, 1615, 1501, 1450, 1333, 1262.

¹**H NMR** (500 MHz, acetone- d_6) δ 8.11 (d, J = 8.0 Hz, 2H), 7.53 – 7.51 (m, 2H), 7.39 (d, J = 8.0 Hz, 2H),

7.22 – 7.19 (m, 1H), 2.46 (s, 3H), 2.43 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆) δ 163.2, 149.2, 142.7, 142.3, 134.5, 129.9, 127.5, 126.3, 124.8, 119.9,

110.1, 20.9, 20.8 ppm.

GC-MS (EI, 70 eV) m/z: 223 ([M]⁺)

5-Methyl-2-(4-tert-butylphenyl)benzoxazole⁶

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 138-140 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3107, 2963, 2930, 2871, 1729, 1621, 1532, 1460, 1269.

¹**H NMR** (500 MHz, acetone- d_6) δ 8.56 (d, J = 2.0 Hz, 1H), 8.34 (dd, J = 9.0, 2.0 Hz, 1H), 8.20 (d, J = 8.5Hz, 2H), 7.92 (d, J = 9.0 Hz, 1H), 7.69 (d, J = 9.0 Hz, 2H), 2.81 (s, 3H), 1.39 (s, 9H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆) δ 162.9, 155.0, 149.0, 142.5, 134.3, 127.2, 126.1, 126.0, 124.6, 119.7, 109.9, 34.7, 30.5, 20.5 ppm.

GC-MS (EI, 70 eV) *m/z*: 265 ([M]⁺).

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 112 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2924, 2854, 1730, 1608, 1499, 1420, 1254.

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.12 (d, J = 9.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.55 (s, 1H), 7.20 (d, J = 8.5 Hz, 1H), 7.15 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H), 2.44 (s, 3H) ppm.

¹³C NMR (125 MHz, DMSO-*d*₆) δ 162.5, 148.7, 142.1, 134.7, 129.5, 126.5, 119.6, 119.5, 119.2, 115.2, 110.6, 55.9, 21.3 ppm.

GC-MS (EI, 70 eV) *m/z*: 239 ([M]⁺).

5-Methyl-2-(4-chlorophenyl)benzoxazole⁶

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 124-125 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3050, 2957, 2849, 1615, 1501, 1450, 1420, 1287.

¹**H NMR** (500 MHz, CDCl₃): δ 8.18 (d, J = 9.0 Hz, 2H), 7.55 (s, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.0

Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 2.49 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆): δ 162.3, 149.2, 142.4, 137.7, 134.7, 129.3, 128.9, 126.6, 126.0, 120.1, 110.1, 21.6 ppm.

GC-MS (EI, 70 eV) *m/z*: 243 ([M]⁺).

5-Methyl-2-(4-fluorophenyl)benzoxazole⁶

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 170-171 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3050, 2957, 2849, 1615, 1501, 1450, 1420, 1287.

¹**H** NMR (500 MHz, CDCl₃) δ 8.27 – 8.17 (m, 2H), 7.53 (s, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.21 – 7.12 (m, 3H), 2.47 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 164.9 (d, J = 250.9 Hz),
162.4, 149.2, 142.4, 134.6, 129.9 (d, J = 8.8 Hz), 126.4,
123.8 (d, J = 3 Hz), 120.0, 116.2 (d, J = 22.1 Hz), 110.0,
21.6 ppm

GC-MS (EI, 70 eV) *m/z*: 227 ([M]⁺)

5-Methyl-2-(4-hydroxyphenyl)benzoxazole¹⁰

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, Yield 81%, mp = 220-221 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3050, 2957, 2849, 1615, 1501, 1450, 1420, 1287.

¹**H** NMR (500 MHz, acetone- d_6): δ 9.23 (s, 1H), 8.10 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 2.45 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-d₆): δ 161.9, 154.5, 149.0, 143.6, 135.0, 132.8, 130.2, 126.5, 120.3, 116.8, 110.6, 21.4 ppm.

GC-MS (EI, 70 eV) *m/z*: 225 ([M]⁺).

5-Methyl-2-(pyridin-4-yl)benzoxazole¹¹

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 129 - 130 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3406, 2921, 1612, 1537, 1414, 1344, 1068, 808.

¹**H NMR** (500 MHz, CDCl₃): δ 8.80 (d, J = 4.5 Hz, 2H), 8.07 (d, J = 5.0 Hz, 2H), 7.59 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 2.50 (s, 3H) ppm. ¹³**C NMR** (125 MHz, CDCl₃): δ 160.8, 150.7, 149.3, 142.1,

135.2, 134.8, 127.7, 121.1, 120.6, 110.4, 21.6 ppm.

GC-MS (EI, 70 eV) *m/z*: 210 ([M]⁺).

5-Chloro-2-phenylbenzoxazole7

H₃C

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, $mp = 102-104 \text{ }^{\circ}\text{C}$.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3061, 1612, 1551, 1443, 1333, 1265.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.23 (d, J = 7.5 Hz, 2H), 7.77 (d, J = 1.5 Hz, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.59 – 7.64 (m, 3H), 7.42 (dd, J = 9.0, 1.5 Hz, 1H) ppm.

¹³C NMR (125 MHz, acetone-d₆) δ 165.3, 150.6, 144.5, 133.1, 130.7, 130.2, 128.6, 127.7, 126.4, 120.7, 112.9 ppm.
GC-MS (EI, 70 eV) m/z: 229 ([M]⁺).

5-Chloro-2-(p-tolyl)benzoxazole¹²

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 138-140 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2925, 1610, 1551, 1479, 1258.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.13 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 2.0 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.40 – 7.33 (m, 4H), 2.44 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆) δ 165.6, 150.5, 144.6, 143.8, 130.8, 130.6, 128.6, 126.2, 125.0, 120.5, 112.8, 21.7 ppm.

GC-MS (EI, 70 eV) *m/z*: 243 ([M]⁺).

5-Chloro-2-(4-tert-butylphenyl)benzoxazole¹³

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 140-142 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2957, 2902, 2866, 1611, 1552, 1493, 1457, 1262.

¹**H NMR** (500 MHz, acetone- d_6) δ 8.17 (d, J = 8.5 Hz, 2H), 7.76 (s, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 8.5 Hz, 2H), 7.41 (dd, J = 8.5, 2.0 Hz, 1H), 1.38 (s, 9H) ppm.

¹³C NMR (125 MHz, acetone- d_6) δ 165.5, 156.7, 150.6, 144.6, 130.6, 128.6, 127.2, 126.2, 125.0, 120.5, 112.8, 35.9, 31.5 ppm.

GC-MS (EI, 70 eV) *m/z*: 285 ([M]⁺).

5-Chloro-2-(4-methoxyphenyl)benzoxazole¹²

OCH₃

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 148-150 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2962, 1610, 1551, 1479, 1448, 1258.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.19 – 8.17 (m, 2H), 7.72 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 8.5 Hz, 1H), 7.38 (dd, J = 8.5, 2.0 Hz, 1H), 7.16 – 7.14 (m, 2H), 3.92 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-d₆) δ 165.5, 164.1, 150.5, 144.8, 130.5, 126.6, 125.8, 120.3, 120.0, 115.7, 112.6, 56.2 ppm.

GC-MS (EI, 70 eV) *m/z*: 259 ([M]⁺).

5-Chloro-2-(4-fluororophenyl)benzoxazole¹⁴

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, $mp = 156-157 \text{ }^{\circ}\text{C}$.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3061, 2922, 1610, 1551, 1481, 1450, 1331, 1260, 1227.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.31 (dd, J = 8.5, 5.5 Hz, 2H), 7.78 (s, 1H), 7.73 (d, J = 8.6 Hz, 1H), 7.47 – 7.38 (m, 3H) ppm.

¹³C NMR (125 MHz, acetone- d_6): δ 166.0 (d, J = 250 Hz), 164.3, 150.5, 144.3, 131.1 (d, J = 9.0 Hz), 130.6, 126.3, 124.2, 120.5, 117.2 (d, J = 22.4 Hz), 112.7 ppm. GC-MS (EI, 70 eV) m/z: 247 ([M]⁺)

5-Chloro-2-(4-chlorophenyl)benzoxazole¹²

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 190-192 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 2925, 1610, 1549, 1542, 1480, 1449, 1260, 1197.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.28 – 8.23 (m, 2H), 7.80 (d, J = 1.5 Hz, 1H), 7.74 (d, J = 8.5 Hz, 1H), 7.69 – 7.65 (m, 2H), 7.46 (dd, J = 8.5, 1.5 Hz, 1H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆): δ 164.6, 150.7, 144.4, 138.8, 130.9, 130.5, 130.3, 126.8, 126.6, 120.8, 113.0 ppm.

GC-MS (EI, 70 eV) *m/z*: 263.

5-Chloro-2-(4-hydroxyphenyl)benzoxazole¹⁰

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 185-187 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3162, 2920, 2850, 1666, 1596, 1553, 1446, 1448, 1333, 1286, 1217.

¹**H NMR** (500 MHz, acetone- d_6): δ 8.13 – 8.09 (m, 2H),

7.69 (dd, *J* = 8.5, 2.0 Hz, 2H), 7.38 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.07 – 7.04 (m, 2H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆): δ 162.1, 150.2, 144.7, 130.6, 125.5, 121.6, 120.0, 118.9, 117.0, 112.4, 88.3 ppm.

GC-MS (EI, 70 eV) *m/z*: 245 ([M]⁺).

5-Chloro-2-(pyridin-4-yl)benzoxazole¹¹

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. White solid, mp = 152 - 153 °C. **FT-IR** (KBr, 4000 – 400 cm⁻¹): 3431, 2922, 1612, 1568, 1539, 1449, 1057, 874.

¹**H NMR** (500 MHz, (CDCl₃): δ 8.83 (d, J = 5.5 Hz, 2H), 8.07 (dd, J = 4.5, 1.5 Hz, 2H), 7.80 (d, J = 2.0 Hz, 1H), 7.55 (d, J = 8.5 Hz, 1H), 7.40 (dd, J = 8.5, 2.0 Hz, 1H) ppm. ¹³**C NMR** (125 MHz, (CDCl₃): δ 162.0, 150.8, 149.6, 143.0, 134.2, 130.9, 126.9, 121.3, 120.8, 111.9 ppm. **GC-MS** (EI, 70 eV) *m/z*: 230 ([M]⁺).

5-Nitro-2-phenylbenzoxazole¹²

Analytical TLC on silica gel, 1/19 acetone/petroleum ether. Yellow solid, mp = 167-168 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3107, 2922, 2852, 1704, 1604, 1525, 1473, 1448, 1247, 1285.

¹**H NMR** (500 MHz, DMSO- d_6) δ 8.68 (d, J = 2.5 Hz, 1H), 8.35 (dd, J = 9.0, 2.0 Hz, 1H), 8.26 – 8.24 (m, 2H), 8.06 (d, J = 9.0 Hz, 1H), 7.71 – 7.65 (m, 3H) ppm.

¹³C NMR (125 MHz, DMSO-*d*₆) δ 165.4, 154.0, 145.1, 141.9, 132.9, 129.5, 127.8, 125.5, 121.5, 115.7, 111.8 ppm.
GC-MS (EI, 70 eV) *m/z*: 240 ([M]⁺)

5-Nitro-2-(p-tolyl)benzoxazole¹⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

Yellow solid, mp = 125-126 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3467, 3106, 2964, 2869, 1723, 1531, 1462, 1420, 1130.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.31 – 8.27 (m, 2H), 7.57 – 7.55 (m, 2H), 7.40 – 7.35 (m, 2H), 7.24 (d, J = 9.0 Hz, 1H), 2.47 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆) δ 166.7, 164.7, 150.0, 143.3, 135.5, 130.8, 130.7, 127.30, 124.8, 120.7, 117.2, 117.0, 110.9, 21.4 ppm.

GC-MS (EI, 70 eV) *m/z*: 254 ([M]⁺)

5-Nitro-2-(4-tert-butylphenyl)benzoxazole¹⁶

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 154-156 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3106, 2964, 2869, 1723, 1531, 1462, 1410, 1267.

¹**H** NMR (500 MHz, acetone- d_6) δ 8.18 – 8.16 (m, 2H), 7.66 – 7.63 (m, 2H), 7.56 – 7.54 (m, 2H), 7.23

– 7.21 (m, 1H), 1.38 (s, 9H) ppm.

¹³C NMR (125 MHz, acetone-d₆) δ 166.9, 157.3, 155.3, 146.4, 143.6, 132.1, 129.7, 128.7, 127.2, 124.2, 122.0, 116.4, 112.1, 35.8, 31.4 ppm.
GC-MS (EI, 70 eV) *m/z*: 296 ([M]⁺)

5-Nitro-2-(4-methoxyphenyl)benzoxazole¹²

OCH₃

Yellow solid, mp = 182-183 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3457, 2964, 1723, 1631, 1462, 1410, 1267.

¹**H NMR** (500 MHz, acetone- d_6) δ 8.55 (d, J = 2.5 Hz, 1H), 8.34 (dd, J = 9.0, 2.5 Hz, 1H), 8.25 – 8.23 (m, 2H), 7.91 (d, J = 9.0 Hz, 1H), 7.20 – 7.18 (m, 2H), 3.95 (s, 3H) ppm.

¹³C NMR (125 MHz, acetone-*d*₆) δ 163.5, 154.4, 142.8, 129.8, 120.8, 118.3, 115.2, 114.8, 111.0, 55.2 ppm.

GC-MS (EI, 70 eV) *m/z*: 270 ([M]⁺)

5-Nitro-2-(4-fluorophenyl)benzoxazole¹⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, Yield 74%, mp = 202-205 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3061, 2925, 1650, 1584, 1582, 1542, 1473, 1448, 1247, 1225.

¹**H** NMR (500 MHz, acetone- d_6): δ 8.60 (d, J = 2.3 Hz, 1H), 8.39 – 8.35 (m, 3H), 7.96 (d, J = 8.9 Hz, 1H), 7.47 – 7.41 (m, 2H) ppm.

¹³C NMR (125 MHz, acetone- d_6): δ 166.2 (d, J = 250.0 Hz), 155.3, 131.3 (d, J = 10.0 Hz), 123.5, 122.0, 117.3 (d, J = 22.5 Hz), 116.5, 112.1 ppm.

GC-MS (EI, 70 eV) *m/z*: 258 ([M]⁺).

 O_2N

5-Nitro-2-(4-chlorophenyl)benzoxazole¹⁵

Analytical TLC on silica gel, 1/19 acetone/petroleum ether.

White solid, mp = 207-210 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3420, 3105, 2964, 2853, 1723, 1528, 1434, 1410, 1256.

7.97 (d, *J* = 9 Hz, 1H), 7.72 – 7.68 (m, 2H) ppm.

¹³C NMR (125 MHz, acetone- d_6): δ 155.4, 139.3, 130.4,

130.3, 129.5, 125.3, 122.2, 116.6, 114.8, 112.2, 103.5ppm. GC-MS (EI, 70 eV) *m/z*: 274 ([M]⁺).

Characterization of 2-arylbezothiazoles

2-Phenylbenzothiazole¹⁷

Analytical TLC on silica gel, 1/19 ethyl acetate/hexanes.

White solid, $mp = 125-126 \text{ }^{\circ}\text{C}$.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3435, 3063, 1508, 1283, 1027,

763.

¹H NMR (500 MHz, CDCl₃) δ 8.12 – 8.08 (m, 3H), 7.91 (d, J = 8.0 Hz, 1H), 7.52 – 7.48 (m, 4H), 7.41 – 7.36 (m, 1H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ 168.2, 154.3, 135.2, 133.8, 131.1, 129.2, 127.7, 126.5, 125.3, 123.4, 121.6 ppm.
GC-MS (EI, 70 eV) m/z: 211 ([M]⁺)

2-(4-Methylphenyl)benzothiazole¹⁷

Analytical TLC on silica gel, 1/19 ethyl acetate/hexanes.

White solid, mp = 95 - 96 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3427, 2919, 1605, 1477, 1216.

¹**H** NMR (500 MHz, CDCl₃): δ 8.10 – 8.04 (m, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.88 (dd, J = 8.0, 0.5 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.39 – 7.35 (m, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 168.3, 154.3, 141.5, 135.1, 131.1, 129.8, 127.6, 126.4, 125.1, 123.2, 121.7, 21.6 ppm.
GC-MS (EI, 70 eV) m/z: 225 ([M]⁺)

2-(4-Methoxyphenyl)benzothiazole¹⁷

Analytical TLC on silica gel, 1/19 ethyl acetate/hexanes.

White solid, mp = 123-124 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3408, 2926, 1599, 1478, 1255, 1023, 830.

¹**H NMR** (500 MHz, CDCl₃): δ 8.06 – 8.01 (m, 3H), 7.88 (d, J = 8.0 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.38 – 7.33 (m, 1H), 7.02 – 6.98 (m, 2H), 3.89 (s, 3H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 168.0, 162.1, 154.3, 135.0, 129.3, 126.6, 126.4, 125.0, 123.0, 121.7, 114.5, 55.6 ppm.

GC-MS (EI, 70 eV) *m/z*: 241 ([M]⁺)

2-(4-Fluorophenyl)benzothiazole¹⁷

Analytical TLC on silica gel, 1/19 ethyl acetate/hexanes.

White solid, mp = 110 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3430, 2922, 1639, 1480, 1226, 964.

¹**H NMR** (500 MHz, CDCl₃): δ 8.10 – 8.05 (m, 3H), 7.89 (d, J = 8.0 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.41 – 7.37 (m, 1H), 7.20 – 7.16 (m, 2H) ppm.

¹³**C NMR** (125 MHz, CDCl₃): δ 166.9, 164.0 (d, J = 250 Hz), 154.3, 135.2, 130.1 (d, J = 2.5 Hz), 129.5 (d, J = 8.8 Hz), 126.5, 125.4, 123.4, 121.7, 116.1 (d, J = 22.5 Hz) ppm. **GC-MS** (EI, 70 eV) m/z: 229 ([M]⁺).

2-(4-Chlorophenyl)benzothiazole¹⁷

CI

Analytical TLC on silica gel, 1/19 ethyl acetate/hexanes.

White solid, mp = 119-120 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3432, 3053, 1635, 1505, 1311, 1086, 826.

¹**H NMR** (500 MHz, CDCl₃) δ 8.09 – 8.05 (m, 1H), 8.04 – 8.01 (m, 2H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.40 (m, 1H) ppm.

¹³C NMR (125 MHz, CDCl₃): δ 166.8, 154.3, 137.2, 135.2, 132.3, 129.4, 128.9, 126.6, 125.6, 123.5, 121.8 ppm.

GC-MS (EI, 70 eV) *m/z*: 245 ([M]⁺)

2-(4-Nitrophenyl)benzothiazole¹⁷

Analytical TLC on silica gel, 1/19 ethyl acetate/hexanes.

Yellow solid, Yield 75%, mp = 207 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3429, 2922, 1518, 1339, 1101, 965.

¹H NMR (500 MHz, CDCl₃): δ 8.37 – 8.34 (m, 2H), 8.29 – 8.26 (m, 2H), 8.13 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.48 – 7.45 (m, 1H) ppm.
¹³C NMR (125 MHz, CDCl₃): δ 165.0, 154.3, 149.2, 139.3, 135.7, 128.4, 127.1, 126.4, 124.5, 124.1, 122.0 ppm.
GC-MS (EI, 70 eV) *m/z*: 256 ([M]⁺)

Characterization of 2-arylbezimidazoles

2-Phenylbenzimidazole^{5,3,18}

Analytical TLC on silica gel, 1/19 ethyl acetate/petroleum ether, mp = 293-294 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3411, 1540, 1450, 1408, 967, 774.

¹**H NMR** (500 MHz, DMSO-d₆): *δ* 8.18 (d, *J* = 7.5 Hz, H), 7.60 (s, 1H), 7.57 – 7.55 (m, 2H), 7.51 – 7.48 (m, 1H), 7.22 – 7.19 (m, 2H) ppm.

¹³C NMR (125 MHz, DMSO-d₆): δ 151.2, 130.2, 129.8,

128.9, 126.4, 122.1 ppm.

GC-MS (EI, 70 eV) *m/z* 195 ([M]⁺).

2-(4-Methoxyphenyl)benzimidazole⁵

Analytical TLC on silica gel, 1/19 ethyl acetate/petroleum ether, mp = 204 °C.

FT-IR (KBr, 4000 – 400 cm⁻¹): 3395, 3055, 1452, 1406, 1274, 741.

¹**H NMR** (500 MHz, DMSO-d₆): *δ* 8.49 (s, 1H), 8.05 (d, *J* = 7.5 Hz, 1H), 7.88 (d, *J* = 9Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.17 (d, *J* = 8.5 Hz, 2H), 3.90 (s, 3H) ppm.

¹³C NMR (125 MHz, DMSO-d₆): δ 166.4, 163.2, 144.3, 143.7, 132.4, 132.1, 131.6, 125.1, 124.7, 124.5, 120.1, 115.0, 114.4, 55.7 ppm.

GC-MS (EI, 70 eV) *m/z* 225 ([M]⁺).

2-(4-Fluorophenyl)benzimidazole⁵

Analytical TLC on silica gel, 1/9 ethyl acetate/petroleum ether, mp = 253-254 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3429, 3060, 1604, 1440, 964, 743.

¹³**C NMR** (125 MHz, DMSO-d₆): δ 163.0 (d, J = 245.0 Hz), 150.4, 131.3, 128.7 (d, J = 8.75 Hz), 126.8, 122.1, 116.0, 115.9 ppm.

GC-MS (EI, 70 eV) *m/z* 213 ([M]⁺).

2-(4-Nitrophenyl)benzimidazole⁵

Analytical TLC on silica gel, 1/9 ethyl acetate/petroleum ether, mp = 234-236 °C

FT-IR (KBr, 4000 – 400 cm⁻¹): 3321, 3047, 1517, 1340, 853, 741.

¹**H NMR** (500 MHz, DMSO-d₆): δ 7.89 – 7.87 (m, 2H), 7.82 – 7.80 (m, 1H), 7.77 – 7.74 (m, 1H), 7.66 – 7.63 (m, 2H), 7.49 – 7.43 (m, 2H) ppm.

¹³C NMR (125 MHz, DMSO-d6): δ 167.5, 144.3, 143.8, 141.9, 133.1, 132.7, 131.9, 129.7, 129.0, 125.4, 125.0, 120.1, 115.2 ppm.

GC-MS (EI, 70 eV) *m/z* 240 ([M]⁺).

Section S5. ¹H and ¹³C NMR spectroscopy

Triphenyl(butyl-4-sulphonyl)phosphonium toluenesulfonate

Characterization of 2-arylbezoxazoles

Figure S3. ¹H and ¹³C NMR spectra of 2-phenylbenzoxazole

Figure S4. ¹H and ¹³C NMR spectra of 2-(4-methylphenyl)benzoxazole

Figure S5. ¹H and ¹³C NMR spectra of 2-(4-*tert*-butylphenyl)benzoxazole

8.21 (1972) (1973) (197

Figure S6. ¹H and ¹³C NMR spectra of 2-(4-methoxyphenyl)benzoxazole

8.8.8. 8.8.15

Figure S7. ¹H and ¹³C NMR spectra of 2-(4-nitrophenyl)benzoxazole

Figure S8. ¹H and ¹³C NMR spectra of 2-(4-fluorophenyl)benzoxazole

Figure S9. ¹H and ¹³C NMR spectra of 2-(4-chlorophenyl)benzoxazole

888.800 888.0

Figure S10. ¹H and ¹³C NMR spectra of 2-(3-fluorophenyl)benzoxazole

Figure S11. ¹H and ¹³C NMR spectra of 2-(3-bromophenyl)benzoxazole

Figure S12. ¹H and ¹³C NMR spectra of 2-(2-fluorophenyl)benzoxazole

Figure S13. ¹H and ¹³C NMR spectra of 2-(2-chlorophenyl)benzoxazole

Figure S14. ¹H and ¹³C NMR spectra of 2-(2-hydroxyphenyl)benzoxazole

Figure S15. ¹H and ¹³C NMR spectra of 2-(pyridine-4-yl)benzoxazole

Figure S16. ¹H and ¹³C NMR spectra of 5-methyl-2-phenylbenzoxazole

Figure S17. ¹H and ¹³C NMR spectra of 5-methyl-2-(*p*-tolyl)benzoxazole

Figure S18. ¹H and ¹³C NMR spectra of 5-methyl-2-(4-tert-butylphenyl)benzoxazole

Figure S19. ¹H and ¹³C NMR spectra of 5-methyl-2-(4-methoxyphenyl)benzoxazole

Figure S20. ¹H and ¹³C NMR spectra of 5-methyl-2-(4-fluorophenyl)benzoxazole

Figure S21. ¹H and ¹³C NMR spectra of 5-methyl-2-(4-chlorophenyl)benzoxazole

Figure S22. ¹H and ¹³C NMR spectra of 5-methyl-2-(4-hydroxyphenyl)benzoxazole

Figure S23. ¹H and ¹³C NMR spectra of 5-methyl-2-(pyridine-4-yl)benzoxazole

Figure S24. ¹H and ¹³C NMR spectra of 5-chloro-2-phenylbenzoxazole

Figure S25. ¹H and ¹³C NMR spectra of 5-chloro-2-(*p*-tolyl)benzoxazole

Figure S26. ¹H and ¹³C NMR spectra of 5-chloro-2-(4-tert-butylphenyl)benzoxazole

Figure S27. ¹H and ¹³C NMR spectra of 5-chloro-2-(4-methoxyphenyl)benzoxazole

Figure S28. ¹H and ¹³C NMR spectra of 5-chloro-2-(4-fluorophenyl)benzoxazole

Figure S29. ¹H and ¹³C NMR spectra 5-chloro-2-(4-chlorophenyl)benzoxazole

Figure S30. ¹H and ¹³C NMR spectra of 5-chloro-2-(4-hydroxyphenyl)benzoxazole

Figure S31. ¹H and ¹³C NMR spectra of 5-chloro-2-(pyridin-4-yl)benzoxazole

Figure S32. ¹H and ¹³C NMR spectra of 5-nitro-2-phenylbenzoxazole

-2.47

Figure S33. ¹H and ¹³C NMR spectra of 5-nitro-2-(4-methylphenyl)benzoxazole

Figure S34. ¹H and ¹³C NMR spectra of 5-nitro-2-(4-tert-butylphenyl)benzoxazole

Figure S35. ¹H and ¹³C NMR spectra of 5-nitro-2-(4-methoxyphenyl)benzoxazole

Figure S36. ¹H and ¹³C NMR spectra of 5-nitro-2-(4-fluorophenyl)benzoxazole

Figure S37. ¹H and ¹³C NMR spectra of 5-nitro-2-(4-chlorophenyl)benzoxazole

Characterization of 2-arylbezothiazoles

Figure S38. ¹H and ¹³C NMR spectra of 2-phenylbenzothiazole

Figure S39. ¹H and ¹³C NMR spectra of 2-(4-chlorophenyl)benzothiazole

Figure S40. ¹H and ¹³C NMR spectra of 2-(4-fluorophenyl)benzothiazole

Figure S41. ¹H and ¹³C NMR spectra of 2-(4-methylphenyl)benzothiazole

Figure S42. ¹H and ¹³C NMR spectra of 2-(4-methoxyphenyl)benzothiazole

Figure S43. ¹H and ¹³C NMR spectra of 2-(4-nitrophenyl)benzothiazole

Characterization of 2-arylbezimidazoles

Figure S44. ¹H and ¹³C NMR spectra of 2-phenylbenzimidazole.

Figure S45. ¹H and ¹³C NMR spectra of 2-(4-methoxyphenyl)benzimidazole.

Figure S46. ¹H and ¹³C NMR spectra of 2-(4-fluorophenyl)benzimidazole.

Figure S47. ¹H and ¹³C NMR spectra of 2-(4-nitrophenyl)benzimidazole.

Section S5. References

- 1. Cole, A. C.; Jensen, J. L.; Ntai, I.; Tran, K. L. T.; Weaver, K. J.; Forbes, D. C.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 5962-5963.
- 2. Teo, Y. C.; Riduan, S. N.; Zhang, Y. Green Chem. 2013, 15, 2365-2368.
- 3. Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Chem. Commun. (Camb) **2014**, *50*, 6145-6148.
- 4. Patil, M. R.; Bhanushali, J. T.; Nagaraja, B. M.; Keri, R. S. C. R. Chimie 2017.
- 5. Azizian, J.; Torabi, P.; Noei, J. *Tetrahedron Lett.* **2016**, *57*, 185-188.
- 6. Zhou, Q.; Zhang, J. F.; Cao, H.; Zhong, R.; Hou, X. F. J. Org. Chem. 2016, 81, 12169-12180.
- 7. Gupta, R.; Sahu, P. K.; Sahu, P. K.; Srivastava, S. K.; Agarwal, D. D. *Catal. Commun.* **2017**, *92*, 119-123.
- 8. Wu, A.; Chen, Q.; Liu, W.; You, L.; Fu, Y.; Zhang, H. Org. Lett. 2017.
- 9. Steinberg, D. F.; Turk, M. C.; Kalyani, D. *Tetrahedron* **2017**, *73*, 2196-2209.
- 10. Huang, L.; Zhang, W.; Zhang, X.; Yin, L.; Chen, B.; Song, J. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 5299-5305.
- 11. Yamada, S.; Murakami, K.; Itami, K. Org. Lett. 2016, 18, 2415-2418.
- 12. Srivastava, A.; Shukla, G.; Singh, M. S. *Tetrahedron* **2017**, *73*, 879-887.
- 13. Reyes, H.; Beltran, H. I.; Rivera-Becerril, E. *Tetrahedron Lett.* 2011, *52*, 308-310.
- 14. Prakash, O.; Batra, A.; Sharma, V.; Saini, R. K.; Verma, R. S. J. Indian Chem. Soc. 2003, 80, 1031-1034.
- 15. Vosooghi, M.; Arshadi, H.; Saeedi, M.; Mahdavi, M.; Jafapour, F.; Shafiee, A.; Foroumadi, A. J. Fluorine Chem. **2014**, *161*, 83-86.
- 16. Yalçın, İ.; Şener, E.; Özden, T.; Özden, S.; Akın, A. *Eur. J. Med. Chem.* **1990**, *25*, 705-708.
- 17. Gao, Y.; Song, Q.; Cheng, G.; Cui, X. Org. Biomol. Chem. 2014, 12, 1044-1047.
- 18. Sharma, H.; Singh, N.; Jang, D. O. *Green Chem.* **2014**, *16*, 4922-4930.