Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018 ## Supplementary Information ## Homogeneity and tolerance to heat of monolayer MoS₂ on SiO₂ and h-BN Ho-Jong Kim,^{a,d} Daehee Kim,^a Suyong Jung,^a Myung-Ho Bae,^a Sam Nyung Yi,^b Kenji Watanabe,^c Takashi Taniguchi,^c Soo Kyung Chang^d and Dong Han Ha^{*a} ^aQuantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea ^bDepartment of Electronic Material Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea ^cNational Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan ^dDepartment of Physics, Yonsei University, Seoul 03722, Republic of Korea *E-mail: dhha@kriss.re.kr ^{*} PMMA: poly(methyl methacrylate) / PSS: poly-styrensulfonic / OHP: overhead projector / IPA: isopropyl alcohol Fig. S1 Schematic diagram of the experimental process to fabricate MoS_2 and h-BN vertical heterostructures on SiO_2/Si substrate.