Electronic Supplementary Information

Magnesium β -Ketoiminates as CVD Precursors for

MgO Formation

Elaheh Pousaneh^[a], Tobias Rüffer^[a], Khaybar Assim^[a], Volodymyr Dzhagan^[b,c], Julian Noll^[a], Dietrich R. T. Zahn^[b], Lutz Mertens^[d], Michael Mehring^[d], Stefan E. Schulz^[e,f], Heinrich Lang^{*[a]}

- a) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Inorganic Chemistry, D-09107 Chemnitz, Germany
- b) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Physics, Semiconductor Physics, D-09107 Chemnitz, Germany
- c) V. E. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
- d) Technische Universität Chemnitz, Faculty of Natural Sciences, Institute of Chemistry, Coordination Chemistry, D-09107 Chemnitz, Germany
- e) Technische Universität Chemnitz, Center for Microtechnologies, D-09107 Chemnitz, Germany
- f) Fraunhofer Institute for Electronic Nano Systems ENAS, Technologie-Campus 3, D-09126 Chemnitz, Germany

*Corresponding author: Email: heinrich.lang@chemie.tu-chemnitz.de; Phone: +49 (0)371-531-21210; Fax: +49-(0)371-531-21219

Content

DSC argon	trac	es	of 3,4		C		under
PXRD 3c	pattern	of the	e TG 4,5	residues	of	3b	and
SEM im 5,6	ages of the dep	osited layer	s obtained f	rom 3a and 3 0			
EDX 3c	spectra of	the de 7,8	posited fi	lms obtaine	d from	3a	and
XPS 3c	spectra of	the 8,	deposits 9	obtained	from	3a	and
Detailed 10	XPS spectra o	btained from	m 3a				
PXRD 3c	pa	ittern	of	10	the		layer

Figure S1. DSC traces of **3a** under argon (gas flow 20 mL min⁻¹, argon carrier gas flow 20 mL min⁻¹, heating rate 10 °C min⁻¹).

Figure S2. DSC traces of **3b** under argon (gas flow 20 mL min⁻¹, argon carrier gas flow 20 mL min⁻¹, heating rate 10 °C min⁻¹).

Figure S3. DSC traces of **3c** under argon (gas flow 20 mL min⁻¹, argon carrier gas flow 20 mL min⁻¹, heating rate 10 °C min⁻¹).

Figure S4. PXRD pattern of the TG residues of **3b** under argon (top) *vs* under oxygen (middle) (red: crystalline MgO (ICDD 01-071-1176). (Crystal size: top: 10 ± 1 nm, middle: 14 ± 1 nm.)

Figure S5. PXRD pattern of the TG residues of **3c** under Ar (top) *vs* under oxygen (middle) (red: crystalline MgO (ICDD 01-071-1176). (Crystal size: top: 8 ± 1 nm, middle: 17 ± 1 nm.)

Figure S6. Left: Layer obtained from the CVD of **3a**. Right: Cross section image obtained from the CVD of **3a**, substrate temperature 450 °C, deposition time 1 h, working pressure 1 mbar, N_2 (50 mL min⁻¹), O_2 (40 mL min⁻¹).

Figure S7. Left: Layer obtained from the CVD of **3c**. Right: Cross section image obtained from the CVD of **3c**, substrate temperature 450 °C, deposition time 1 h, working pressure 1 mbar, N_2 (50 mL min⁻¹), O_2 (40 mL min⁻¹).

Figure S8. Left: Layer obtained from the CVD of **3c**. Right: Cross section image obtained from the CVD of **3c**, substrate temperature 450 °C, deposition time 1 h, working pressure 1 mbar, N_2 (50 mL min⁻¹).

Figure S9. EDX spectra of the film obtained using 3a as CVD precursor, N_2 (50 mL min⁻¹), substrate temperature 450 °C.

Figure S10. EDX spectra of the film obtained using 3c as CVD precursor, N₂ (50 mL min⁻¹), substrate temperature 450 °C.

Figure S11. EDX spectra of the film obtained using 3c as CVD precursor, N_2 (50 mL min⁻¹), O_2 (40 mL min⁻¹), substrate temperature 450 °C.

Figure S12. XPS spectra of the MgO film obtained using **3a** as CVD precursor, N₂ (50 mL min⁻¹), O₂ (40 mL min⁻¹), substrate temperature 450 °C, after 2 min sputtering (Ar⁺, 4.0 keV).

Figure S13. XPS spectra of the MgO film obtained using **3c** as CVD precursor, N₂ (50 mL min⁻¹), substrate temperature 450 °C, after 2 min sputtering (Ar⁺, 4.0 keV).

Figure S14. XPS spectra of the MgO film obtained using **3c** as CVD precursor, N₂ (50 mL min⁻¹), O₂ (40 mL min⁻¹), substrate temperature 450 °C, after 2 min sputtering (Ar⁺, 4.0 keV).

Figure S15. Detailed XPS spectra of the surface and layer composition of the film obtained from **3a** as CVD precursor, N₂ (50 mL min⁻¹), O₂ (40 mL min⁻¹), substrate temperature 450 °C, after 2 min sputtering (Ar⁺, 4.0 keV).

Figure S16. PXRD pattern of the layer obtained using **3c** as CVD precursor, N_2 (50 mL min⁻¹), deposition time 1 h, working pressure 1 mbar, substrate temperature 450 °C.