Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Brønsted acidic ionic liquids for cellulose hydrolysis in aqueous medium: Structural effects on acidity and glucose yield

Shiori Suzuki,# Yuko Takeoka, Masahiro Rikukawa and Masahiro Yoshizawa-Fujita*

Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan. E-mail*: masahi-f@sophia.ac.jp

[#] Now at Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

The file includes: Supporting Fig. S1–S3 and Table S1–S2

Instrument: TG-DTA 7200
(Hitachi High-Technologies, Co. Ltd.)
Apparatus: open-type
aluminum pan

- Sample loading: 10 mg
- Heating rate: 10 °C min⁻¹
- N₂ flow: 200 mL min⁻¹

.

Fig. S1 TG curves of zwitterions.

Table S1 Therma	l property	of zwitterions
-----------------	------------	----------------

Zwitterion ^{<i>a</i>}	<i>T</i> _{d-5%} ^{<i>b</i>} / ^o C
Mimps	326
Mims	302
Imds	226

 $^{\it o}$ Prior to TG measurement, each zwitterion was dried at 120°C for 1 h under $N_2.$

^b T_{d-5%}: 5% weight loss temperature.

Fig. S2 Optimized molecular structures of BAILs with mono– or disulfuric acid groups using B3LYP/6-311G++(d, p).

Zw ^a	HX ^b	Glucose yield / %	Residue ^c / wt.%
Mim	H_2S	22.2+2.2	E G
ps	O ₄	52.5±2.2	5.0
Bimp		30 7+2 2	10
S		50.7 ±2.2	15
Oimp		36 3+3 8	21
Mim	нсі	23 7+0 3	24
ps		2017 2013	
Bimp		26.0+1.5	30
S			
Oimp		27.7+1.2	26
S		_,	

Table S2 Residual amount of residue after cellulose hydrolysis(160 °C, 15 min) in 1 M BAILs aqueous solution

^{*o*} Zw: zwitterion. ^{*b*} HX: kinds of acid used to prepare BAILs called as Zw/HX; X is corresponded to anion species. ^{*c*} Represented as *wt*.% to the starting weight of cellulose (10 mg).

Fig. S3 (1) Optimized molecular structures of BAILs with HSO₄ anion using B3LYP/6-311G++(d, p).

Fig. S3 (2) Optimized molecular structures of BAILs with Cl anion using B3LYP/6-311G++(d, p).

Fig. S3 (3) Optimized molecular structures of BAILs with sulfonic acid anon or carboxylic acid anion using B3LYP/6-311G++(d, p).

Fig. S3 (4) Optimized molecular structures of BAILs with TFSI anon or phosphoric acid anion using B3LYP/6-311G++(d, p).