Electronic Supplementary Information

Facile synthesis of manganese-based complex as cathode materials for

conductive-carbon-assisted aqueous rechargeable batteries

Nan Qiu,^{*} Hong Chen, Zhaoming Yang, Sen Sun, Yuan Wang^{*}

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China.

E-mail: <u>qiun@scu.edu.cn</u>, <u>wyuan@scu.edu.cn</u>.

Figure S1. The photographs of the cathode film.

Figure S2. SEM images of cathode electrode in the charged/discharged state. a) 1.85V, charged state, b) 1V discharged state.

Figure S3. Electrochemical performance of manganese-based complex in 1M ZnSO₄. a) Cycling performance at various current densities (0.1-4.0 A g⁻¹). b) Charge and discharge voltage profiles using 1M ZnSO₄ as electrolyte at various current densities between 1.0-1.85 V vs. Zn/Zn²⁺

Current density (A g ⁻¹)	0.1	0.2	0.5	1.0	1.5	2.0	4.0
Discharge capacity (mAh g ⁻¹)	248	231	196	175	160	149	131
Energy density (Wh kg ⁻¹)	335.0	317.3	261.5	231.0	211.8	197.5	175.0

Table S1. Specific capacity and energy density of manganese-based complex.

Table S2. Summary of electrochemical performance of different cathode materialsfor aqueous rechargeable batteries

Samples	Electrolyte	Energy density base on the active mass of electrode materials	Cycling performance	Reference number
LiMn ₂ O ₄	21M LITFSI	~200 Wh/kg at 24 mA/g	~40 mAh/g 68% with 1000 cycles at 540 mA/g and 78% with 100 cycles at 18 mA/g	3
LiMn ₂ O ₄	0.5 M Li ₂ SO ₄	~75 Wh/kg at 500 mA/g	~120 mAh/g 100% capacity after 1200 cycles at 500 mA/g	4
LiMn ₂ O ₄	0.5 M Li ₂ SO ₄	~100 Wh/kg at 500 mA/g	37 mAh/g 93% capacity retained after 10000 cycles at 1000 mA/g	5
NaMnO ₂	2 M CH3COONa	30Wh/kg at 60 mA/g	37 mAh/g 75% capacity retained after 500 cycles at 300	6
Na _{0.95} MnO ₂	$0.5M Zn(CH_3COO)_2$ $0.5M CH_3COONa$	~84 Wh/kg at 1C	40 mAh/g 92% capacity retained after 1000 cycles at 4C	7
Amorphous FePO ₄	1M ZnSO ₄		96mAh/g at 10 mA/g	8
ZnMn ₂ O ₄	3M Zn(CF ₃ SO ₃) ₂	~202 Wh/kg at 50 mA/g	~90 mAh/g 94% capacity retained after 500 cycles at 500 mA/g	2
CuHCF	20mM ZnSO₄	~95Wh/kg at 60 mA/g	~55 mAh/g 96.3% capacity retained after 100 cycles at 60 mA/g	9
Zn ₃ [Fe(CN) ₆] ₂	1M ZnSO4	100 Wh/kg at 60 mA/g	~65 mAh/g 76% capacity retained after 100 cycles at 60 mA/g	10

α-MnO ₂			195 mAh/g		
	1M ZnSO ₄		70% capacity retained after 30	11	
			cycles at 10 mA/g		
α-MnO ₂		~21E W/b/kg at	100 mAh/g		
	1M ZnSO ₄	315 WI/kg at 32 mA/g	100% capacity retained after	12	
			100 cycles at 380 mA/g		
			252 mAh/g		
δ -MnO ₂	1M ZnSO ₄		44% capacity retained after 100	13	
			cycles at 83 mA/g		
α-MnO ₂			225 mAh/g		
	1M ZnSO ₄		63% capacity retained after 50	14	
			cycles at 83 mA/g		
VS ₂	1M ZnSO4	123 Wh/kg at 50 mA/g	190.3 mAh/g		
			98% capacity retained after 200	15	
			cycles at 50 mA/g		
Na ₃ MnTi(PO ₄) ₃		~92 W/b/kg at	58.4 mAh/g		
	1M Na ₂ SO ₄	52 WH/Kg at	98% capacity retained after 100	16	
		56.7 MA/g	cycles at 58.7 mA/g		
γ -MnO_2 with TiB_2	114 70504		220 mAh/g		
			55% capacity retained after 40	17	
	saturated LIOH		cycles at 0.5 mA/cm ²		
γ -MnO_2 with TiS_2	114 70504		148 mAh/g		
			50% capacity retained after 40	18	
	saturated LIOH		cycles at 0.5 mA/cm ²		
			149 mAh/g		
Manganese-based complex.		335 Wh/kg at	100% capacity retained after	This work	
	1M ZnSO ₄	100 mA/g	500 cycles at 2000 mA/g		
	0.1M MnSO ₄	175 Wh/kg at	131 mAh/g		
		4000 mA/g	93.9% capacity retained after		
			2000 cycles at 4000 mA/g		

References

- 1. S. Guo, H. Yu, Z. Jian, P. Liu, Y. Zhu, X. Guo, M. Chen, M. Ishida and H. Zhou, *ChemSusChem*, 2014, **7**, 2115-2119.
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu and J. Chen, J. Am. Chem. Soc., 2016, 138, 12894-12901.
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang and K. Xu, *Science*, 2015, 350, 938-943.
- 4. W. Tang, Y. Hou, F. Wang, L. Liu, Y. Wu and K. Zhu, *Nano Lett.*, 2013, **13**, 2036-2040.
- 5. Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li and Y. Wu, *Energy & Environmental Science*, 2011, **4**, 3985-3990.
- 6. Z. Hou, X. Li, J. Liang, Y. Zhu and Y. Qian, *Journal of Materials Chemistry A*, 2015, **3**, 1400-1404.

- B. Zhang, Y. Liu, X. Wu, Y. Yang, Z. Chang, Z. Wen and Y. Wu, *Chem. Commun. (Cambridge, U. K.)*, 2014, **50**, 1209-1211.
- 8. V. Mathew, S. Kim, J. Kang, J. Gim, J. Song, J. P. Baboo, W. Park, D. Ahn, J. Han, L. Gu, Y. Wang, Y.-S. Hu, Y.-K. Sun and J. Kim, *NPG Asia Mater*, 2014, **6**, e138.
- 9. R. Trocoli and F. La Mantia, *ChemSusChem*, 2015, **8**, 481-485.
- 10. L. Y. Zhang, L. Chen, X. F. Zhou and Z. P. Liu, *Advanced Energy Materials*, 2015, **5**, 1400930.
- B. Lee, H. R. Lee, H. Kim, K. Y. Chung, B. W. Cho and S. H. Oh, *Chem. Commun. (Cambridge, U. K.)*, 2015, **51**, 9265-9268.
- 12. C. Xu, B. Li, H. Du and F. Kang, *Angew. Chem., Int. Ed.*, 2012, **51**, 933-935.
- 13. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, D. T. Pham, J. Jo, Z. Xiu, V. Mathew and J. Kim, *Electrochem. Commun.*, 2015, **60**, 121-125.
- 14. M. H. Alfaruqi, J. Gim, S. Kim, J. Song, J. Jo, S. Kim, V. Mathew and J. Kim, *J. Power Sources*, 2015, **288**, 320-327.
- 15. P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An and L. Mai, *Advanced Energy Materials*, 2017, 1601920.
- 16. H. Gao and J. B. Goodenough, *Angew. Chem., Int. Ed.*, 2016, **55**, 12768-12772.
- 17. M. Minakshi, D. R. G. Mitchell and K. Prince, *Solid State Ionics*, 2008, **179**, 355-361.
- M. Minakshi, P. Singh, D. R. G. Mitchell, T. B. Issa and K. Prince, *Electrochim. Acta*, 2007, 52, 7007-7013.