An efficient, green approach for the synthesis of 2,4-dihydropyrano[2,3-c] pyrazole-3-carboxylates using Bi₂O₃/ZrO₂ as a reusable catalyst

Sandeep V.H.S. Bhaskaruni, Suresh Maddila, Werner E. van Zyl and Sreekantha B. Jonnalagadda*

*School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000, South Africa

*Corresponding Author: Prof. Sreekantha B. Jonnalagadda School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa. Tel.: +27 31 2607325, Fax: +27 31 2603091 E-mail address: jonnalagaddas@ukzn.ac.za

Contents	Pages	
Catalyst instrumentation details (SI – I)	2	
Materials, methods and instruments (SI – I)	2	
Spectral characterization data (SI – II)	3-5	
All the synthesized spectral information (SI – III)	6-37	

Catalyst instrumentation details

Employing a Bruker D8 Advance instrument (Cu K radiation source with a wave length of 1.5406 Å), the X-ray diffraction data related the structural phases of the catalyst were acquired. Using a Jeol JEM-1010 electron microscope and JEOL JSM-6100 microscope, the TEM and SEM analysis data was recorded. iTEM software was used analyze the TEM data and images. Employing the X-ray analyzer (energy-dispersive), EDX-analysis on the SEM images was conducted.

Experimental Section:

All chemicals and reagents required for the reaction were of analytical grade and were used without any further purification. Bruker AMX 400 MHz NMR spectrometer was used to record the ¹H NMR, ¹³C NMR and ¹⁵N NMR spectral values. High-resolution mass data were obtained using a Bruker micro TOF-Q II ESI instrument operating at ambient temperature. The DMSO–d₆ solution was utilized for this while TMS served as the internal standard. TMS was further used as an internal standard for reporting the all chemical shifts in δ (ppm). Purity of all the reaction products was confirmed by TLC using aluminum plates coated with silica gel (Merck Kieselgel 60 F254).

Ethyl 6-amino-5-cyano-4-(2-methoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5a):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.01 (t, *J* = 7.12 Hz, 3H, CH₃), 3.69 (s, 3H, OCH₃), 4.01-4.06 (m, 2H, CH₂), 5.05 (s, 1H, CH), 6.82 (d, *J* = 8.56 Hz, 2H, ArH), 6.85 (s,2H, NH₂), 6.89 (dd, *J* = 1.56 Hz, *J* = 1.56 Hz, 1H, ArH), 6.94 (d, *J* = 8.04, 1H, ArH), 7.15-7.22 (m, 1H, ArH), 13.57 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.57, 31.62, 55.43, 56.00, 60.62, 103.58, 111.33, 120.21, 127.87, 128.59, 132.41, 136.46, 156.25, 156.60, 158.25, 160.56; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.85 (s, 2H, NH₂), 13.57 (s, 1H, NH). HRMS of [C₁₇H₁₆N₄O₄—H⁺] (m/z): 339.1082; Calcd.: 339.0992.

Ethyl 6-amino-5-cyano-4-(4-methoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5b):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.08 (t, *J* = 7.08Hz, 3H, CH₃), 3.70 (s, 3H, OCH₃), 4.07-4.12 (m, 2H, CH₂), 4.69 (s, 1H, CH), 6.83 (d, *J* = 8.56 Hz, 2H, ArH), 6.97 (s,2H, NH₂), 7.00 (d, *J* = 8.6 Hz, 2H, ArH), 13.69 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.77, 36.16, 54.95, 58.16, 60.79, 113.53, 115.16, 120.31, 124.08, 128.31, 133.32, 137.07, 157.87, 158.12, 159.87. ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.97 (s, 2H, NH₂), 13.69 (s, 1H, NH). HRMS of [C₁₇H₁₆N₄O₄—H⁺] (m/z): 339.1082; Calcd.: 339.1093.

Ethyl 6-amino-5-cyano-4-(2,3-dimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5c):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.06 (t, *J* = 7.04 Hz, 3H, CH₃),3.54 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 4.07-4.09 (m, 2H, CH₂), 4.91 (s, 1H, CH), 6.60 (d, *J* = 7.13 Hz, 2H, ArH), 6.89 (d, *J* = 8.28 Hz, 1H, ArH), 6.91 (s, 2H, NH₂), 6.95 (d, *J* = 7.92 Hz, 1H, ArH), 13.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.72, 32.79, 55.48, 56.90, 59.69, 60.67, 103.87, 111.46, 120.56, 121.37, 123.18, 128.68, 137.21, 146.42, 152.26, 155.91, 158.19, 160.48; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.91 (s, 2H, NH₂), 13.55 (s, 1H, NH). HRMS of [C₁₈H₁₈N₄O₅+Na⁺] (m/z): 393.1188; Calcd.: 393.1175.

Ethyl 6-amino-5-cyano-4-(3,4-dimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5d):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.08 (t, *J* = 7.12 Hz, 3H, CH₃), 3.68 (d, *J* = 5.72 6H, OCH₃), 4.08-4.13 (m, 2H, CH₂), 4.70 (s, 1H, CH), 6.56 (dd, *J* = 1.84 Hz, *J* = 1.84, 1H, ArH), 6.71 (d, *J* = 1.84 Hz, 1H, ArH), 6.55 (d, *J* = 8.32 Hz, 1H, ArH), 6.96 (s, 2H, NH₂), 13.55 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.76, 36.46, 55.44, 58.04, 60.79, 103.84, 111.73, 119.22, 127.24, 128.93, 137.55, 148.25, 154.42, 155.48, 158.15, 159.93, 160.59; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.96 (s, 2H, NH₂), 13.55 (s, 1H, NH). HRMS of [C₁₈H₁₉N₄O₅+H⁺] (m/z): 371.0389; Calcd.: 371.0395.

Ethyl 6-amino-5-cyano-4-(2,5-dimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5e):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.04 (t, *J* = 7.12 Hz, 3H, CH₃), 3.61 (d, *J* = 6.61 Hz, 6H, OCH3), 4.03-4.09 (m, 2H, CH₂), 4.97 (s, 1H, CH), 6.46 (d, *J* = 2.66 Hz, 1H, ArH), 6.74 (dd, *J* = 3 Hz, *J* = 3.04Hz, 1H, ArH), 6.85 (s, 1H, ArH), 6.87 (s, 2H, NH₂), 13.58 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.58, 32.12, 55.18, 56.05, 56.57, 60.69, 103.39, 111.52, 112.60, 115.48, 120.33, 128.61, 133.54, 150.99, 152.82, 156.18, 158.25, 160.62; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.87 (s, 2H, NH₂), 13.58 (s, 1H, NH).

Ethyl 6-amino-5-cyano-4-(2,4,6-trimethoxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5f):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.06 (t, *J* = 7.09 Hz, 3H, CH₃), 3.73 (s, 3H, OCH₃), 3.89 (d, *J* = 7.96 Hz, 6H, OCH₃), 4.02-4.11 (m, 2H, CH₂), 5.27 (s, 1H, CH), 6.33 (s, 2H, ArH), 6.88 (s,2H, NH₂), 13.25 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.78, 25.41, 55.04, 55.79, 56.11, 60.38, 103.69, 104.51, 112.39, 113.84, 116.38, 120.70, 156.67, 158.59, 159.55, 167.37.; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.88 (s, 2H, NH₂), 13.25 (s, 1H, NH). HRMS of [C₁₉H₂₀N₄O₆+Na⁺] (m/z): 423.1297; Calcd.: 423.1281.

Ethyl 6-amino-5-cyano-4-(3-hydroxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5g):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.07 (t, *J* = 7.08 Hz, 3H, CH₃), 4.08-4.13 (m, 2H, CH₂), 4.63 (s, 1H, CH), 6.40 (s, 1H, ArH), 6.51-6.58 (m, 2H, ArH), 6.99 (s, 2H, NH₂), 7.05 (t, *J* = 7.79 Hz,1H, ArH), 9.27 (s, 1H, OH), 13.71 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.74, 36.85, 55.98, 60.80, 103.74, 113.59, 114.06, 117.99, 120.26, 128.95, 129.07, 146.30, 155.56, 157.16, 158.16, 160.02;¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.99 (s, 2H, NH₂), 13.71 (s, 1H, NH)

Ethyl 6-amino-5-cyano-4-(3,4-dihydroxyphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3 carboxylate (5h):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.12 (t, *J* = 7.12 Hz, 3H, CH₃), 4.10-4.15 (m, 2H, CH₂), 4.54 (s, 1H, CH), 6.37-6.42 (m, 2H, ArH), 6.60 (d, *J* = 8.04 Hz, 1H, ArH), 6.93 (s, 2H, NH₂), 8.67 (s, 1H, OH), 8.79 (s, 1H, OH), 13.65 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.82, 36.34, 58.42, 60.80, 104.41, 114.50, 115.04, 118.12, 120.41, 128.81, 136.05, 143.91, 144.55, 155.47, 158.23, 159.83; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.93 (s, 2H, NH₂), 13.65 (s, 1H, NH). HRMS of [C₁₆H₁₄N₄O₅—H⁺] (m/z): 341.0886; Calcd.: 341.0886.

Ethyl 6-amino-5-cyano-4-(2-nitrophenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5i):

¹H NMR (400 MHz, DMSO-d₆) δ = 0.92 (t, *J* = 7.08 Hz, 3H, CH₃), 3.96-4.05 (m, 2H, CH₂), 5.57 (s, 1H, CH), 7.14 (s, 2H, NH₂), 7.22 (dd, *J* = 1.08, *J* = 1.08 Hz, 1H, ArH), 7.44-7.48 (m,

1H, ArH), 7.61-7.65 (m, 1H, ArH), 7.92 (dd, J = 1.12 Hz, J = 1.12 Hz, ArH), 13.79 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.63, 31.49, 56.12, 60.85, 102.33, 119.60, 128.02, 128.99, 131.07, 133.64, 138.89, 148.20, 155.58, 157.73, 160.55; ¹⁵N NMR (40.55 MHz, DMSO-d₆) $\delta = 7.14$ (s, 2H, NH₂), 13.79 (s, 1H, NH). HRMS of [C₁₆H₁₃N₅O₅-H⁺] (m/z): 354.0850; Calcd.: 354.0838.

Ethyl 6-amino-4-(4-bromophenyl)-5-cyano-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5j):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.05 (t, *J* = 3.56 Hz, 3H, CH₃), 4.06-4.12 (m, 2H, CH₂), 4.76 (s, 1H, CH), 7.05 (s, 2H, ArH), 7.07 (s, 2H, NH₂), 7.47 (d, *J* = 8.32, 2H, ArH), 13.77 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.76, 36.37, 57.27, 60.85, 102.99, 119.59, 120.09, 129.06, 129.62, 131.11, 144.26, 155.45, 157.97, 160.00; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 7.07 (s, 2H, NH₂), 13.77 (s, 1H, NH). HRMS of [C₁₆H₁₃BrN₄O₃—H⁺] (m/z): 387.0106; Calcd.: 387.0093.

Ethyl 6-amino-5-cyano-4-(4-ethylphenyl)-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylate (5k):

¹H NMR (400 MHz, DMSO-d₆) δ = 1.06 (d, *J* = 6.44 Hz, 3H, CH₃), 1.15 (d, *J* = 6.44 Hz, 3H, CH₃), 2.54 (d, *J* = 7.04 Hz, 2H, CH₂), 4.09 (d, *J* = 5.56 Hz, 2H, CH₂), 4.70 (s, 1H, CH), 6.99 (s, 2H, NH₂), 7.11 (d, *J* = 6.60 Hz,4H, ArH), 13.70 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆): 13.71, 15.49, 27.70, 36.55, 57.95, 60.76, 103.83, 120.31, 127.17, 127.55, 128.91, 141.93, 142.23, 155.54, 158.12, 159.97; ¹⁵N NMR (40.55 MHz, DMSO-d₆) δ = 6.99 (s, 2H, NH₂), 13.70 (s, 1H, NH). HRMS of [C₁₈H₁₈N₄O₃—H⁺] (m/z): 337.1310; Calcd.: 337.1301.

¹H NMR spectra of compound **5a**

¹³C NMR spectra of compound **5a**

¹⁵N NMR spectra of compound **5a**

HRMS spectra of compound 5a

FT-IR spectra of compound 5a

 ^{1}H NMR spectra of compound **5b**

¹³C NMR spectra of compound **5b**

HRMS spectra of compound 5b

FT-IR spectra of compound 5b

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5c}$

¹³C NMR spectra of compound **5**c

¹⁵N NMR spectra of compound **5c**

HRMS spectra of compound 5c

FT-IR spectra of compound 5c

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5d}$

 $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{5d}$

¹⁵N NMR spectra of compound **5d**

Elemental Composition	Report	Page 1							
Single Mass Analysis Tolerance = 5.0 PPM / DE Element prediction: Off Number of isotope peaks use	E: min = -1.5, max = ed for i-FIT = 3	100.0							
Monoisotopic Mass, Even Electron lons 34 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 15-20 H: 15-20 N: 0-5 O: 0-5									
ppy-5 3 (0.068) Cm (1:61) TOF MS ES+				8.0051005					
100 % 361.1626362.1642 36 0 360.0 362.5 365.0	371.0 7.3571 369.1178 367.5 370.0	389 372.0432 374.0413 377.0539 372.5 375.0 37	78,2029 381,3708 384,9379 38 7.5 380.0 382.5 385.0	0.9007 389.0110 1007 - m/z 387.5					
Minimum: Maximum:	5.0 5.0	-1.5 100.0							
Mass Calc. Mass	mDa PPM	DBE i-FIT	i-FIT (Norm) Formula						
371.0389 371.0395	-0.6 -1.6	11.5 658.8	0.0 C18 H19 N4	05					

HRMS spectra of compound 5d

FT-IR spectra of compound 5d

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5e}$

¹³C NMR spectra of compound **5**e

 $^{15}\mathrm{N}$ NMR spectra of compound $5\mathrm{e}$

FT-IR spectra of compound 5e

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5f}$

 $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{5f}$

¹⁵N NMR spectra of compound **5**f

HRMS spectra of compound 5f

FT-IR spectra of compound 5f

 ^{1}H NMR spectra of compound **5g**

¹³C NMR spectra of compound **5**g

 $^{15}\mathrm{N}$ NMR spectra of compound $\mathbf{5g}$

FT-IR spectra of compound 5g

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5h}$

^{13}C NMR spectra of compound $\mathbf{5h}$

 ^{15}N NMR spectra of compound $\mathbf{5h}$

Elementa	I Composition	Report						Page 1
Single Ma Tolerance = Element pro Number of	ss Analysis 5.0 PPM / D ediction: Off isotope peaks us	BE: min = -1 sed for i-FIT	.5, max = 1 = 2	00.0				
Monoisotopi 15 formula(e Elements Us C: 15-20 ppy-9 61 (2.0) TOF MS ES-	c Mass, Even Elec) evaluated with 1 sed: H: 10-15 N: 0- 24) Cm (1:61)	ctron lons results within 5 O: 0-5	limits (up to	20 best isoto	pic matches fo	or each mass)		
100 - - - %			3	41.0886				2.78e+00
					342.0	922		
0-339	.0783	340.0804		341.210	8 341.6750	34	43.0949343.2812	344.0959 m/z
339.	00 339.50	340.00 3	40.50 34	1.00 341	.50 342.00	342.50 343	3.00 343.50	344.00
Minimum: Maximum:		5.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	

HRMS spectra of compound 5h

FT-IR spectra of compound 5h

¹H NMR spectra of compound **5**i

¹³C NMR spectra of compound **5**i

¹⁵N NMR spectra of compound **5**i

HRMS spectra of compound 5i

FT-IR spectra of compound 5i

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5j}$

¹³C NMR spectra of compound **5**j

¹⁵N NMR spectra of compound **5**j

HRMS spectra of compound 5j

¹H NMR spectra of compound **5**j

 $^1\mathrm{H}$ NMR spectra of compound $\mathbf{5k}$

 ^{13}C NMR spectra of compound $\mathbf{5k}$

¹⁵N NMR spectra of compound **5**k

HRMS spectra of compound 5k

FT-IR spectra of compound 5k