Supporting Information

A C₁-Symmetric N-Heterocyclic Carbene Catalysed Oxidative Spiroannulation of Isatin-Derived Enals: Highly Enantioselective Synthesis of Spirooxindole δ-Lactones

Jun-Bing Lin, ^{[a],+} Xi-Na Cheng, ^{[a],+} Xiao-Dong Tian, ^[a] Guo-Qiang Xu, ^[a]

Yong-Chun Luo, [a] and Peng-Fei Xu*[a]

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engeneering, Lanzhou University, Lanzhou 730000, China.

xupf@lzu.edu.cn

Contents

A.	General Info	ormation						S2
B.	General	Procedure	for S3	the	Synthesis	of	Spirooxindole	3
C.	X-ray Cryst	allographic D	ata of P	roduct 3	a			.S19
D.	NMR Spect	ra and HPLC	Chroma	tograms				S20

A. General Information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ with chemical shifts and were reported in ppm relative to either the residual solvent peak or internal standard (TMS). IR spectra were recorded on FT-IR instrument and are reported in wavenumbers (cm⁻¹). HRMS were performed on FTMS mass instrument (ESI). HPLC analysis was conducted on a IC column delta eluting with DCM and *n*-hexane. Optical rotation was measured on a polarimeter with $[\alpha]_D$ values reported in degrees with the concentration (c) in g/100 mL. Chiral N-heterocyclic carbene catalysts (NHC) ¹, α , β -unsaturated aldehyde ² and 1,3-dicarbonyl compounds ³ were prepared according to the literature procedures.

- [1] Lu, H.; Liu, J. Y.; Li, C. G.; Lin, J. B.; Liang, Y. M.; Xu, P. F. Chem. Commun. 2015, 51, 4473.
- [2] Mukaiyama, T.; Ogata, K.; Sato, I.; Hayashi, Y. Chem. Eur. J. 2014, 20, 13583.
- [3] a) Ji, C. Y.; Huang, C. Z.; Wang, N.; Jiang, Y. Z.; Peng, Y. G. Synlett 2005, 6, 986; b) Bartlett, S.
 L.; Beaudry, C. M. J. Org. Chem. 2011, 76, 9852.

B. General Procedure for the Synthesis of Spirooxindole 3

DBU (0.02mmol) was added to the mixture of 2-(1-benzyl-2-oxoindolin-3-ylidene) acetaldehyde **1a** (0.1 mmol), 1-phenylbutane-1,3-dione **2a** (0.1 mmol), chiral catalyst **II** (12.2 mg, 0.02mmol), and oxidant (0.2 mmol) in toluene (1.0 mL) at room temperature under N_2 atmosphere. The reaction was stirred at room temperature until **2a** was consumed as monitored by TLC. The reaction mixture was concentrated in vacuo and purified by flash column chromatography or preparative TLC to afford the corresponding product **3**.

(S)-5'-benzoyl-1-benzyl-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (3a):

White solid; m.p. 174–176°C; $[\alpha]25 \text{ D} = -8.0 (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 70:30), 1.0 mL/min; major enantiomer $t_R = 11.9$ min, minor enantiomer $t_R = 27.8$ min; ¹HNMR (400 MHz, CDCl₃) δ 7.53 (d, J = 6.4Hz, 2H),7.51 (t, J = 1.2Hz, 1H), 7.39 (t, J = 8.0Hz, 2H), 7.29 (m, 5H),7.13 (q, J = 5.2Hz, 2H), 6.97 (m, 1H), 6.63 (d, J = 7.6Hz,1H), 4.90 (d, J = 16.0Hz, 1H), 4.75 (d, J = 16.0Hz, 1H), 3.16 (d, J = 15.6Hz, 1H), 2.89 (d, J = 15.6Hz, 1H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.5, 176.2, 164.5, 157.8, 142.2, 138.4, 135.2, 133.1, 129.6, 129.3, 128.8, 128.7, 127.7, 127.2, 123.3, 122.6, 115.9, 110.0, 50.0, 44.2, 38.0, 19.6; IR (KBr): 3060, 2924, 1785, 1715, 1649, 1612, 1489, 1467, 1364, 1325, 1181, 1137, 931, 736, 704 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₁NO₄ 446.1363, found 446.1372.

(8)-1-benzyl-5'-(4-bromobenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)dione (3b):

White solid; m.p. 225–228°C; $[\alpha]26 D= 9.0 (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer $t_R = 13.6$ min, minor enantiomer $t_R = 28.9$ min; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (q, J = 8.8Hz, 4H), 7.31 (q, J = 7.2Hz, 5H), 7.15 (q, J = 7.6Hz, 2H), 6.99 (t, J = 7.2Hz, 1H), 6.66 (d, J = 7.6Hz, 1H), 4.88 (d, J = 15.6Hz, 1H), 4.78 (d, J = 16.0Hz, 1H), 3.15 (d, J = 15.6Hz, 1H), 2.88 (d, J = 15.6Hz, 1H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 176.1, 164.3, 157.8, 142.2, 137.0, 135.1, 132.1, 130.3, 129.4, 128.8, 128.4, 127.8, 127.2, 123.4, 122.6, 115.6, 110.0, 50.0, 44.2, 38.0, 19.6. IR (KBr): 3061, 2926, 1786, 1715, 1650, 1488, 1365, 1265, 1180, 1136, 1069, 1009, 930, 738, 700, 491, 458

cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀BrNO₄ 524.0468, found 524.0469.

(S)-1-benzyl-5'-(4-fluorobenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-

White solid; m.p. 79–81 °C; $[\alpha]25 \text{ D}=-4.0 (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer t_R = 13.1min, minor enantiomer t_R = 27.7min. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (q, *J*= 6.4Hz, 2H), 7.30 (m, 5H), 7.15 (q, *J* = 7.2Hz, 2H), 7.05 (t, *J* = 8.0Hz, 2H), 6.99 (t, *J* = 7.6Hz, 1H), 6.65 (d, *J* = 7.6Hz, 1H), 4.88 (d, *J* = 15.6Hz, 1H), 4.78 (d, *J* = 16.0Hz, 1H), 3.15 (d, *J* = 15.6Hz, 1H), 2.88 (d, *J* = 16.0Hz, 1H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 176.1, 164.4, 157.4, 142.2, 135.1, 134.7, 134.6, 131.6, 131.5, 129.5, 129.4, 128.8, 127.8, 127.2, 123.4, 122.6, 116.1, 115.8, 115.6, 110.0, 50.0, 44.3, 38.0, 19.5. IR (KBr): 3062, 2925, 1786, 1714, 1650, 1597, 1489, 1467, 1365, 1323, 1136, 1005, 931, 736, 699, 600 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀FNO₄ 464.1269, found 464.1271.

(S)-1-benzyl-5'-(4-chlorobenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)dione (3d):

White solid; m.p. 206–208°C; $[\alpha]$ 26 D= 2.0 (*c*=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH_2Cl_2 : *n*-hexane = 65:35), 1.0 mL/min; major enantiomer $t_R = 13.3$ min, minor enantiomer $t_R = 27.6$ min. ¹H NMR (400 MHz, $CDCl_3$) δ 7.63 (d, J = 8.4Hz, 2H), 7.35 (d, J = 8.4Hz, 2H), 7.29 (m, 5H), 7.15 (q, J = 7.2Hz, 2H), 6.99 (t, J = 7.6Hz, 1H), 6.66 (d, J = 7.6Hz, 1H), 4.88 (d, J = 15.6Hz, 1H), 4.78 (d, J = 15.6Hz, 1H), 3.15 (d, J = 16.0Hz, 1H), 2.88 (d, J = 16.0Hz, 1H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 176.0, 164.3, 157.7, 142.1, 139.8, 136.6, 135.0, 130.2, 129.4, 129.1, 128.8, 127.7, 127.2, 123.3, 122.6, 115.6, 110.0, 50.0, 44.3, 38.0, 19.6. IR (KBr): 3060, 2925, 1787, 1716, 1651, 1488, 1365, 1323, 1265, 1181, 1134, 1012, 931, 738, 701 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀ClNO₄ 480.0973, found 480.0972.

(S)-1-benzyl-6'-methyl-5'-(4-nitrobenzoyl)spiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (3e):

White solid; m.p. 68–70°C; $[\alpha]$ 26 D= -3.0 (c=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH_2Cl_2 : *n*-hexane = 65:35), 1.0 mL/min;

major enantiomer $t_R = 17.2$ min, minor enantiomer $t_R = 28.6$ min. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.8Hz, 2H), 7.79 (d, J = 8.8Hz, 2H), 7.30 (m, 5H), 7.16 (m, 2H), 7.01 (t, J = 7.6Hz, 1H), 6.67 (d, J = 7.6Hz, 1H), 4.87 (d, J = 15.6Hz, 1H), 4.76 (d, J = 15.6Hz, 1H), 3.19 (d, J = 15.6Hz, 1H), 2.88 (d, J = 16.0Hz, 1H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 176.0, 163.9, 159.5, 150.1, 143.2, 142.0, 134.9, 129.6, 129.5, 128.9, 127.9, 127.3, 123.9, 123.5, 115.7, 110.1, 49.9, 44.3, 38.1, 19.8. IR (KBr): 3062, 2925, 2854, 2374, 1788, 1715, 1610, 1527, 1467, 1350, 1180, 851, 754, 737, 699cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀N₂O₆ 491.1214, found 491.1210.

(S)-1-benzyl-6'-methyl-5'-(4-(trifluoromethyl)benzoyl)spiro[indoline-3,4'-pyran]-

2,2'(3'H)-dione (3f):

White solid; m.p. 58–60 °C; $[\alpha]26 \text{ D}=-12.0 \ (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 50:50), 1.0 mL/min; major enantiomer $t_R = 17.6$ min, minor enantiomer $t_R = 34.9$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0Hz, 2H), 7.63 (d, J = 8.0Hz, 2H), 7.28 (m, 5H), 7.16 (t, J = 8.0Hz, 2H), 7.00 (t, J = 7.6Hz, 1H), 6.64 (d, J = 8.0Hz, 1H), 4.89 (d, J = 16.0Hz, 1H), 4.72 (d, J= 15.6Hz, 1H), 3.18 (d, J = 16.0Hz, 1H), 2.89 (d, J = 15.6Hz, 1H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 176.1, 164.1, 158.9, 142.1, 141.3, 135.0, 129.5, 129.0, 128.8, 127.8, 127.2, 123.4, 122.5, 115.7, 110.0, 50.0, 44.2, 38.0, 19.7. IR (KBr): 3062, 2926, 1716, 1612, 1468, 1358, 1327, 1175, 1133, 1068, 855, 738, 699 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₂₀F₃NO₄ 514.1237, found 514.1241.

(S)-1-benzyl-6'-methyl-5'-(4-methylbenzoyl)spiro[indoline-3,4'-pyran]-2,2'(3'H)-

dione (3g):

White solid; m.p. 201–204°C; $[\alpha]26 \text{ D} = -2.0 (c=1.0 \text{ in } \text{CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column(CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer t_R = 16.0min, minor enantiomer t_R = 39.2min. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0Hz, 2H), 7.29 (t, J = 6.8Hz, 5H), 7.19 (d, J = 8.0Hz, 2H), 7.14 (m, 2H), 6.96 (t, J = 7.6Hz, 1H), 6.64 (d, J = 8.0Hz, 1H), 4.89 (d, J = 16.0Hz, 1H), 4.70 (d, J= 16.0Hz, 1H), 3.15 (d, J = 15.6Hz, 1H), 2.89 (d, J = 15.6Hz, 1H), 2.39 (s, 3H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.0, 176.2, 164.7, 157.0, 144.3, 142.2, 135.7, 135.2, 129.7, 129.4, 129.2, 129.1, 128.8, 127.6, 127.2, 123.2, 122.5, 115.8, 109.9, 50.1, 44.2, 38.0, 21.7, 19.6. IR (KBr): 3059, 2925, 1785, 1715, 1646, 1607, 1489, 1467, 1325, 1264, 1181, 1136, 931, 736 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₂₃NO₄ 460.1519, found 460.1516.

dione (3h):

White solid; m.p. 75–76°C, $[\alpha]26 \text{ D}= -7.0 \ (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer $t_R = 13.0$ min, minor enantiomer $t_R = 30.9$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4Hz, 2H), 7.29 (d, J = 8.4Hz, 2H), 7.27(m, 5H), 7.14 (t, J = 8.0Hz, 2H), 6.97 (t, J = 7.6Hz, 1H), 6.62 (d, J = 8.0Hz, 1H), 4.92 (d, J = 15.6Hz, 1H), 4.73 (d, J= 16.0Hz, 1H), 3.16 (d, J = 15.6Hz, 1H), 2.88 (d, J = 15.6Hz, 1H), 2.96 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 194.1, 176.2, 164.7, 157.3, 157.1, 142.2, 135.7, 135.2, 129.8, 129.2, 128.9, 128.8, 127.7, 127.2, 125.7, 123.3, 122.6, 115.9, 109.9, 50.1, 44.2, 38.0, 35.2, 31.1, 19.6. IR (KBr): 2925, 1786, 1718, 1608, 1467, 1363, 1181, 1109, 1016, 933, 853, 737, 698, 551 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₁H₂₉NO₄ 502.1989, found 502.1992.

(S)-1-benzyl-5'-(3-methoxybenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)dione (3i):

White solid; m.p. 78–80°C; $[\alpha]26 \text{ D} = -3.0 (c=1.0 \text{ in } \text{CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer t_R = 16.2min, minor enantiomer t_R = 37.6min. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, *J* = 34.4Hz, 7H), 7.14 (t, *J* = 6.8Hz, 3H), 7.06 (d, *J* = 3.6Hz, 1H), 6.98 (t, *J* = 7.6Hz, 1H), 6.62 (d, *J* = 8.0Hz, 1H), 4.92 (d, *J* = 15.6Hz, 1H), 4.73 (d, *J* = 15.6Hz, 1H), 3.78 (s, 3H), 3.12 (d, *J* = 16.0Hz, 1H), 2.89 (d, *J* = 15.6Hz, 1H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 176.2, 164.5, 159.8, 157.9, 142.3, 139.7, 135.2, 129.7, 129.5, 129.3, 128.8, 128.7, 127.7, 127.2, 123.3, 122.6, 121.6, 119.8, 115.9, 112.6, 110.0, 55.4, 50.0, 44.2, 38.0, 19.5. IR (KBr): 2923, 1786, 1718, 1612, 1466, 1431, 1364, 1317, 1264, 1177, 1129, 1040, 739, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₂₃NO₅ 476.1468, found 476.1479.

(S)-1-benzyl-6'-methyl-5'-(3-methylbenzoyl)spiro[indoline-3,4'-pyran]-2,2'(3'H)dione (3j):

White solid; m.p. 182–184°C; $[\alpha]$ 26 D= –10.0 (c=1.0 in CH₂Cl₂); The enantiomeric excess S10

was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer t_R = 14.8min, minor enantiomer t_R = 35.6min. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, *J* = 9.2Hz, 2H), 7.29 (m, 7H), 7.14 (t, *J* = 7.6Hz, 2H), 6.97 (t, *J* = 7.6Hz, 1H), 6.62 (d, *J* = 7.6Hz, 1H), 4.91 (d, *J* = 15.6Hz, 1H), 4.73 (d, *J* = 15.6Hz, 1H), 3.15 (d, *J* = 16.0Hz, 1H), 2.88 (d, *J* = 16.0Hz, 1H), 2.35 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 176.2, 164.6, 157.7, 142.2, 138.6, 138.5, 135.2, 133.9, 129.7, 129.2, 129.1, 128.8, 128.5, 127.6, 127.1, 126.1, 123.2, 122.5, 116.1, 109.9, 50.0, 44.2, 38.1, 21.2, 19.6. IR (KBr): 3060, 2924, 1787, 1716, 1648, 1612, 1489, 1467, 1364, 1319, 1179, 1132, 1008, 946, 736, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₂₃NO₄ 460.1519, found 460.1519.

(8)-1-benzyl-5'-(3-bromobenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)dione (3k):

White solid; m.p. 196–198°C; $[\alpha]$ 26 D= –6.0 (*c*=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer t_R = 12.0min, minor enantiomer t_R = 24.5min. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.61 (q, *J* = 8.0Hz, 2H), 7.29 (m, 6H), 7.15 (m, 2H), 6.99 (t, *J* = 7.6Hz, 1H), 6.64 (d, *J* = 8.0Hz, 1H), 4.92 (d, *J* = 15.6Hz, 1H), 4.73 (d, *J* = 15.6Hz, 1H), 3.15 (d, J = 16.0Hz, 1H), 2.89 (d, J = 15.6Hz, 1H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.1, 176.0, 164.2, 158.5, 142.1, 140.1, 135.9, 135.0, 131.5, 130.2, 129.4, 129.3, 128.8, 127.7, 127.3, 127.1, 123.3, 122.8, 122.4, 115.6, 110.0, 49.9, 44.2, 37.9, 19.7. IR (KBr): 2925, 1786, 1715, 1656, 1612, 1489, 1467, 1364, 1317, 1180, 1138, 937, 739, 699 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀BrNO₄ 524.0468, found 524.0470.

(8)-1-benzyl-5'-(3-chlorobenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-

White solid; m.p. 199–203 °C, $[\alpha]26 \text{ D}= -8.0 (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer $t_R = 11.7$ min, minor enantiomer $t_R = 23.9$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.56 (d, J = 7.6Hz, 1H), 7.49 (d, J = 8.8Hz, 1H), 7.30 (m, 6H), 7.15 (q, J = 7.2Hz, 2H), 7.00 (t, J = 7.6Hz, 1H), 6.64 (d, J = 8.0Hz, 1H), 4.92 (d, J = 15.6Hz, 1H), 4.74 (d, J = 16.0Hz, 1H), 3.16 (d, J = 15.6Hz, 1H), 2.88 (d, J = 15.6Hz, 1H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 176.1, 164.3, 158.5, 142.2, 140.0, 135.1, 135.0, 133.0, 130.0, 129.5, 129.4, 128.9, 128.6, 127.8, 127.2, 126.9, 123.4, 122.5, 115.7, 110.1, 50.0, 44.3, 38.0, 19.7. IR (KBr): 2925, 1787, 1715, 1648, 1612, 1488, 1467, 1364, 1316, 1262, 1181, 1137, 940, 738, 698 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀ClNO₄ 480.0973, found 480.0974.

(S)-1-benzyl-5'-(3-fluorobenzoyl)-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-

White solid; m.p. 214–215 °C, $[\alpha]26 \text{ D}=-6.0 (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH}2Cl_2: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer $t_R = 12.5$ min, minor enantiomer $t_R = 25.3$ min. ¹H NMR (400 MHz, CDCl_3) δ 7.50 (d, J = 7.6Hz, 1H), 7.37 (m,2H), 7.29 (m, 5H), 7.21 (q, J = 1.6Hz, 1H), 7.15 (q, J = 7.2Hz, 2H), 6.99 (t, J = 7.2Hz, 1H), 6.65 (d, J = 8.0Hz, 1H), 4.91 (d, J = 16.0Hz, 1H), 4.77 (d, J = 15.6Hz, 1H), 3.17 (d, J = 16.0Hz, 1H), 2.88 (d, J = 15.6Hz, 1H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 176.1, 164.3, 158.3, 142.2, 140.5, 140.4, 135.1, 130.5, 130.4, 129.5, 129.4, 128.8, 127.7, 127.2, 124.7, 124.6, 123.4, 122.5, 120.3, 120.1, 115.7, 115.5, 115.2, 110.0, 50.0, 44.2, 38.0, 19.6. IR (KBr): 3420, 3064, 2924, 1789, 1714, 1651, 1364, 1316, 1266, 1177, 1129, 1005, 735, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₇H₂₀FNO₄ 464.1269, found 464.1272.

(S)-1-benzyl-6'-methyl-5'-(3-nitrobenzoyl)spiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (3n):

Yellow solid; m.p. 76–78°C, [α]26 D= –16.0 (*c*=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 65:35), 1.0 mL/min; major enantiomer t_R = 22.0min, minor enantiomer t_R = 42.3min. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.36 (d, *J* = 8.4Hz, 1H), 8.00 (d, *J* = 8.0Hz, 1H), 7.58 (t, *J* = 8.0Hz, 1H), 7.30 (m, 5H), 7.17 (t, *J* = 8.8Hz, 2H), 7.01 (t, *J* = 7.6Hz, 1H), 6.66 (t, *J* = 8.0Hz, 1H), 4.87 (d, *J* = 15.6Hz, 1H), 4.73 (d, *J* = 15.6Hz, 1H), 3.22 (d, *J* = 15.6Hz, 1H), 2.88 (d, *J* = 16.0Hz, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 175.9, 163.9, 159.2, 148.3, 142.0, 139.7, 134.9, 134.2, 133.9, 130.0, 129.6, 129.3, 128.9, 127.8, 127.6, 127.3.127.2, 123.5, 122.5, 115.4, 110.1, 50.0, 44.2, 38.0, 19.8. IR (KBr): 2924, 1788, 1714, 1612, 1532, 1467, 1352, 1181, 1143, 721, 698, 633, 554 cm⁻¹; HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₀N₂O₆ 469.1394, found 469.1402.

(S)-1-benzyl-6'-methyl-5'-(thiophene-2-carbonyl)spiro[indoline-3,4'-pyran]-

2,2'(3'H)-dione (3o):

Yellow solid; m.p. 86–88°C, [α]26 D= 20.0 (c=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: n-hexane = 90:10), 1.0 mL/min; major enantiomer t_R = 8.1min, minor enantiomer t_R = 20.6min. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J= 7.6Hz,2H),7.21 (m, 5H), 7.07 (t, J= 8.0Hz, 2H), 6.97 (t, J= 4.4Hz, 1H), 6.89 (t, J= 7.6Hz, 1H), 6.57 (d, J= 8.0Hz,1H), 4.81 (d, J= 15.6Hz, 1H), 4.75 (d, J= 16.0Hz, 1H), 3.00 (d, J= 15.6Hz, 1H), 2.86 (d, J= 16.0Hz, 1H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 175.8, 164.5, 155.9, 144.1, 142.3, 135.3, 135.1, 134.2, 129.4, 128.9, 128.8, 128.2, 127.7, 127.2, 123.3, 123.0, 115.5, 109.9, 49.9, 44.2, 37.8, 19.5. IR (KBr): 3366, 2924, 2372, 1784, 1710, 1607, 1464, 1410, 1356, 1262, 1178, 1126, 737, 663 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₅H₁₉NO₄S 452.0927, found 452.0937.

(S)-5'-acetyl-1-benzyl-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (3p):

White solid; m.p. 144–146°C, $[\alpha]26$ D= –111.0 (*c*=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 90:10), 1.0 mL/min; major enantiomer t_R = 6.8min, minor enantiomer t_R = 14.1min. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (m, 4H), 7.29 (d, *J* = 7.2Hz, 1H), 7.19 (t, *J* = 7.6Hz, 1H), 7.05 (d, *J* = 7.2Hz, 1H), 6.99 (t, *J* = 7.6Hz, 1H), 6.76 (d, *J* = 7.6Hz, 1H), 4.97 (s, 2H), 3.12 (d, *J* = 15.6Hz, 1H), 2.63 (d, *J* = 15.6Hz, 1H), 2.43 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 176.7, 164.3, 160.4, 141.8, 135.3, 129.9, 129.3, 128.8, 127.8, 127.3, 123.2, 122.3, 119.3, 110.1, 49.5, 44.3, 38.4, 30.9, 19.7. IR (KBr): 3300, 2925, 1786, 1715, 1610, 1489, 1466, 1359, 1311, 1178, 736, 700, 584, 495 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₂H₁₉NO₄ 384.1206, found 384.1210.

(S)-5'-benzoyl-1,6'-dimethylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (3q):

White solid; m.p. 176–178°C, [α]26 D= –40.0 (*c*=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 80:20), 1.0 mL/min; major enantiomer t_R = 17.9min, minor enantiomer t_R = 27.5min. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.2Hz, 2H),7.48 (t, *J* = 7.6Hz, 1H), 7.35 (t, *J* = 7.6Hz, 2H), 7.26 (t, *J* = 8.0Hz, 1H), 7.15 (d, *J* = 7.6Hz, 1H), 7.02 (t, J = 7.6Hz, 1H), 6.72 (d, *J* = 7.6Hz, 1H), 3.08 (d, *J* = 16.8Hz, 4H), 2.84 (d, *J* = 16.0Hz, 1H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 176.0, 164.6, 157.9, 143.1, 138.4, 132.9, 129.4, 128.5, 128.4, 123.3, 122.6, 116.2, 108.7, 49.7, 37.5, 26.5, 19.4. IR (KBr): 3297, 2925, 1786, 1714, 1612, 1469, 1374, 1325, 1141, 1089, 932, 753, 705, 585, 542 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₁H₁₇NO₄ 370.1050, found 370.1047.

(S)-1-allyl-5'-benzoyl-6'-methylspiro[indoline-3,4'-pyran]-2,2'(3'H)-dione (3r):

White solid; m.p. 169–172°C, [α]26 D= –12.0 (*c*=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 70:30), 1.0 mL/min; major enantiomer t_R = 15.2min, minor enantiomer t_R = 42.3min. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.6Hz, 2H),7.51 (t, *J* = 7.6Hz, 1H), 7.38 (t, *J* = 7.6Hz, 2H), 7.22 (d, *J* = 8.0Hz, 1H), 7.15 (d, *J* = 7.2Hz, 1H), 7.01 (t, *J* = 7.6Hz, 1H), 6.77 (d, *J* = 7.6Hz, 1H), 5.75 (m, 1H), 5.24 (q, *J* = 12.8Hz, 2H), 4.25 (d, *J* = 5.2Hz, 2H), 3.11 (d, *J* = 16.0Hz, 1H), 2.85 (d, *J* = 15.6Hz, 1H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 175.8, 164.6, 157.8, 142.3, 138.5, 133.1, 130.8, 129.6, 129.3, 128.7, 128.6, 123.2, 122.5, 117.9, 116.0, 109.8, 49.8, 42.7, 37.8, 19.5. IR (KBr): 3059, 2925, 1785, 1711, 1646, 1466, 1363, 1264, 1184, 1133, 1001, 930, 739, 704 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₁₉NO₄ 396.1206, found 396.1209.

White solid; m.p. 207–210 °C, [α]26 D= –7.0 (c=1.0 in CH₂Cl₂); The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: n-hexane = 70:30), 1.0 mL/min; major enantiomer t_R = 10.8min, minor enantiomer t_R = 33.2min. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (t, J = 7.2Hz, 2H), 7.50 (t, J = 7.6Hz, 1H), 7.37 (t, J = 7.6Hz, 2H), 7.26 (m, 2H)(including CDCl₃), 7.15 (d, J = 6.8Hz, 1H), 7.01 (t, J = 7.6Hz, 1H), 6.78 (d, J = 7.6Hz, 1H), 3.59 (m, 2H), 3.09 (d, J = 15.6Hz, 1H), 2.82 (d, J = 16.0Hz, 1H), 1.93 (s, 3H), 1.57 (m, 2H), 1.34 (m, 2H), 0.93 (t, J = 7.6Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 175.9, 164.7, 157.6, 142.6, 138.4, 133.0, 129.8, 129.3, 128.7, 128.6, 123.0, 122.7, 116.1, 109.1, 49.8, 40.2, 37.9, 29.2, 20.1, 19.4, 13.7. IR (KBr): 3408, 2929, 1786, 1711, 1649, 1611, 1466, 1364, 1324, 1189, 1134, 929, 737, 640 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₄H₂₃NO₄ 412.1519, found 412.1526.

White solid; m.p. 88–90°C, $[\alpha]26 D = -16.0 (c=1.0 \text{ in CH}_2\text{Cl}_2)$; The enantiomeric excess was determined by HPLC with an IC column (CH₂Cl₂: *n*-hexane = 90:10), 1.0 mL/min; major enantiomer $t_R = 6.5$ min, minor enantiomer $t_R = 7.8$ min. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.2Hz, 2H), 7.33 (m, 6H), 7.26 (m,3H), 7.15 (t, J = 10.4Hz, 2H), 7.10 (d, J= 8.4Hz, 4H), 6.99 (t, J = 7.6Hz, 1H), 6.70 (d, J = 8.0Hz, 1H), 4.91 (t, J = 16.4Hz, 2H), 3.41 (d, J = 16.4Hz, 1H), 3.00 (d, J = 16.4Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 175.9, 164.7, 157.9, 142.2, 137.4, 135.2, 132.6, 131.8, 130.8, 129.7, 129.4, 129.2, 129.1, 128.8, 128.1, 128.0, 127.7, 127.2, 123.4, 122.7, 115.8, 110.1, 50.9, 44.3, 38.2. IR (KBr): 3060, 2926, 1786, 1716, 1649, 1612, 1467, 1365, 1180, 1105, 1060, 911, 737, 696 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ calcd for C₃₂H₂₃NO₄ 508.1519, found 508.1519.

C. X-ray Crystallographic Data of Product 3a (CCDC 1010784)

Sum formula	$C_{27}H_{21}NO_4$		$C_{27}H_{21}NO_4$
Mr	423.45		423.45
Dx,g cm-3	1.305		1.305
Ζ	4		4
Mu (mm-1)	0.711		0.711
F000	888.0		888.0
F000'	890.75		
h,k,lmax	13,15,18		13,15,18
Nref	4143[2357]		4052
Tmin,Tmax	0.815,0.861		0.629,1.000
Tmin'	0.802		
Correction method= MUL	TI-SCAN		
Data completeness= 1.72/	0.98	Theta(max)= 70.683	
R(reflections) = 0.0418(38)	398)	wR2(reflections)= 0.1	1119(4052)
S = 1.040	Npar= 290		

D. NMR Spectra and HPLC Chromatograms

HPLC analysis of **3a** using chiral IC Column (CH₂Cl₂: *n*-hexane = 70:30, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	12.093	36945996	1419882	47.88
2	25.781	40225708	567292	52.12

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	11.947	43919780	1622670	96.84
2	27.839	1431456	30235	3.16

HPLC analysis of **3b** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.699	82851942	2170508	46.40
2	27.092	95693021	1086846	53.60

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.594	109889625	2629747	96.28
2	28.924	4249272	85.169	3.72

HPLC analysis of **3c** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.270	67303113	1885941	50.12
2	26.203	66976137	844006	49.88

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.133	100589268	2546817	96.39
2	27.697	3769388	81053	3.61

HPLC analysis of **3d** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.282	102688555	2645408	48.79
2	25.821	107789206	1297725	51.21

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.305	88675355	2377858	96.12
2	27.574	3580874	79642	3.88

HPLC analysis of **3e** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

72856798

828507

50.95

2

27.550

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	17.235	101834725	1742672	92.22
2	28.640	8595320	147780	7.78

S31

HPLC analysis of **3f** using chiral IC Column (CH₂Cl₂: *n*-hexane = 50:50, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	17.578	85584496	1709406	95.70
2	34.941	3846181	69093	4.30

HPLC analysis of **3g** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	15.987	879.03777	2046651	97.48
2	39.243	2275791	38691	2.52

HPLC analysis of **3h** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	13.024	77741525	2294357	97.14
2	30.879	2290120	43476	2.86

HPLC analysis of **3i** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	16.164	75517645	1650711	96.65
2	37.568	2617482	38581	3.35

HPLC analysis of **3j** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	15.332	51573759	1241674	49.90
2	34.094	51774328	454486	50.10

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	14.801	92296298	2018600	96.84
2	35.357	3013713	46469	3.16

S41

HPLC analysis of 3k using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	12.118	3.243e7	1.218e6	49.99
2	23.899	3.245e7	6.201e5	50.01

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	12.039	6.373e7	2.050e6	96.12
2	24.546	2.575e6	6.604e4	3.88

HPLC analysis of **3**l using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	12.101	50666678	1759850	49.90
2	23.507	52263185	897960	50.78

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	11.735	85833961	2595404	96.61
2	23.882	3007733	81918	3.39

HPLC analysis of **3m** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	12.718	67484827	1912216	50.91
2	24.702	65075520	933310	49.09

28.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 30.00

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	12.450	77241562	2242993	96.75
2	25.303	2595578	65729	3.25

HPLC analysis of **3n** using chiral IC Column (CH₂Cl₂: *n*-hexane = 65:35, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	22.623	45565661	521863	50.00
2	41.359	45556734	425066	50.00

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	22.042	108776004	1148345	91.78
2	42.298	9744592	120534	8.22

S49

HPLC analysis of **3o** using chiral IC Column (CH₂Cl₂: *n*-hexane = 90:10, 1.0 mL/min)

0.30

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	8.050	38659121	2316413	91.25
2	20.572	3705882	71414	8.75

HPLC analysis of **3p** using chiral IC Column (CH₂Cl₂: *n*-hexane = 90:10, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	6.848	28578656	2216712	94.91
2	14.125	1532598	56012	5.09

HPLC analysis of **3q** using chiral IC Column (CH₂Cl₂: *n*-hexane = 80:20, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	17.938	64653654	1407681	96.75
2	27.488	2175149	32950	3.25

HPLC analysis of **3r** using chiral IC Column (CH₂Cl₂: *n*-hexane = 70:30, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	15.234	137389530	2664460	96.93
2	42.348	4358172	57947	3.07

HPLC analysis of **3s** using chiral IC Column (CH₂Cl₂: *n*-hexane = 70:30, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	10.841	56031752	2409049	96.88
2	33.152	1803060	32520	3.12

HPLC analysis of **3t** using chiral IC Column (CH₂Cl₂: *n*-hexane = 90:10, 1.0 mL/min)

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	6.412	11892079	927533	50.20
2	7.745	11795620	891159	49.80

Peak	Retention time	Peak area	Peak height	Peak area (%)
	(min)	(mAU*s)	(mAU)	
1	6.514	614896	53948	2.17
2	7.795	27699988	1721837	97.83