2 Supporting Information

3 A novel amphiphilic fluorescent probe BODIPY-O-CMC-cRGD as
4 nanoparticle vector
5 Tingting Zhu ${ }^{\mathbf{a}}$, Ji Xionga, Zhongbo Xue ${ }^{\text {a }}$, Yu Su, Fengnan Sun ${ }^{\text {a }}$, Ran Chai ${ }^{\text {c,d }}$, Jialiang Xua ${ }^{\text {a }}$, Yaqing Feng ${ }^{\text {a,b, }}$, Shuxian 6 Menga*

Experiment:

Synthesis
Compound 1: ethyl 6-(4-formylphenoxy) hexanoate
A mixture of 4-hybroxybenzaldehyde derivative ($2.440 \mathrm{~g}, 20 \mathrm{mmol}$) and ethyl 6 -bromohexanoate ($4.906 \mathrm{~g}, 22 \mathrm{mmol}$) was refluxed in dry acetone for 12 h in the presence of potassium carbonate. The crude mixture was filtered to remove remaining $\mathrm{K}_{2} \mathrm{CO}_{3}$. And the resulting solution was concentrated in vacuo and purified by silica gel column chromatography by using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. ${ }^{1} \mathrm{H}$ NMR (400MHZ, $\mathrm{CDCl}_{3} \delta$ inppm): $\delta=9.87(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.8,2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.6,2 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, \mathrm{J}=7.5,2 \mathrm{H}), 1.84(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H})$, $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.0,3 \mathrm{H})$.MALDI-TOF MS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ 264.32,found 264.7892.

Compound 2: ethyl 6-(4-(3,7-dibromo-5,5-difluoro-5H-4I4,514-dipyrrolo[1,2-c:2',1'-

f] [1,3,2]diazaborinin-10-yl)phenoxy)hexanoate

This compound was prepared in a sequence of steps in one pot reaction. Compound $1(2.640 \mathrm{~g}, 10 \mathrm{mmol})$ and 2.5 equivalent of pyrrole ($1.68 \mathrm{~g}, 25 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under nitrogen over 0.5 h , then one drop of $\mathrm{CF}_{3} \mathrm{COOH}$ was added and the solution was stirred for 1.5 h at room temperature. A simple base wash followed by removal of the solvent and vacuum desiccation gave dipyrromethene. The intermediate in dry THF was added dropwise with 2.2 equivalent of N -bromosuccinimide ($3.89 \mathrm{~g}, 22 \mathrm{mmol}$) in dry THF under nitrogen in an ice bath over 1 h and stirred for another 1 h .When the reaction mixture was warmed to room temperature, 2.3-Dichloro-5,6-dicyno-1,4-benzoquinone (DDQ)($2.50 \mathrm{~g}, 11 \mathrm{mmol}$) in dry THF was added dropwise over 10 min . The reaction was monitored by TLC. The organic solvent was removed on a rotary evaporator under vacuum. The crude intermediate product was purified by flash column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to collect the red intermediate product. A solution of collected intermediate product and triethylamine $(2 \mathrm{ml})$ in dried toluene were stirred about 5 min , then 6 mL of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added dropwise. The mixed solution was refluxed for an 1 h . The reaction mixture was washed with 0.1 M NaOH solution and methylene dichloride successively. The organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude compound was filtered by flash column. The residue was purified by silica gel column chromatography by using dichloromethane/petroleum ether and the required red powder compound. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO-d6}$, δ in ppm) $\delta=7.73(\mathrm{~d}$,
$\mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=4.4,2 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=4.4$, $2 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=2.8,3 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) 1.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$. MALDI-TOF MS calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BBr}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ 582.01, found 583.2376.

Compound 3: ethyl 6-(4-(5,5-difluoro-3,7-bis(4-methoxyphenyl)-5H-4I4,514-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10-yl)phenoxy)hexanoate
Compound 2, 4-methoxyphenylboronic acid($2.9 \mathrm{~g}, 5 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, \quad 10 \mathrm{mmol})$ was dissolved in the solvent pair(toluene/water) in a 100 ml round-bottomed flask fitted with a reflux condenser. After bubbling with nitrogen for half an hour, a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(3.5 \mathrm{mg})$ was added and the reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 8 h . The system was cooled to room temperature and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ twice. The organic layer was then dried with MgSO_{4} and evaporated in vacuum. The residue was subjected to chromatography on a silica gel by using dichloromethane/hexane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3} \delta$ in ppm): $\delta=7.90$ $(\mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{H}$ $\mathrm{z}, 2 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 2 \mathrm{H})$
$, 6.53(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=7.4,2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 1.6$ $2(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), \quad 1.30(\mathrm{~m}, 2 \mathrm{H})$. MALDI-TOF MS calcd for $\mathrm{C}_{3} 7 \mathrm{H}_{37} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} 638.28$, found 638.2170 .

Compound 4: ethyl 6-(4-(5,5-difluoro-3,7-bis(4-methoxyphenyl)-5H-4|4,514-dipyrrolo[1,2-c:2',1'$\mathrm{f}][1,3,2$] diazaborinin-10-yl)phenoxy)hexanoate
The compound 3 ($1.276 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{KOH}(4.704 \mathrm{~g}, 84 \mathrm{mmol})$ were dissolved in EtOH (59 ml) and the mixture solution was refluxed at $85^{\circ} \mathrm{C}$ for 1 h. After cooling to the room temperature, the mixture product was neutralized with dilute HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude compound was purification by chromatography on a silica gel by using ethyl acetate/ methylene dichloride. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3} \delta$ in ppm) : $\delta=7.87(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $4 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.07(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{t}, \mathrm{J}=7,2 \mathrm{H}), 1.80-1.20(\mathrm{~m}, 6 \mathrm{H})$. MALDI-TOF MS calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{BF}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} 610.25$, found 611.7846 .

BODIPY dye: 2,5-dioxopyrrolidin-1-yl 6-(4-(5,5-difluoro-3,7-bis(4-methoxyphenyl)-5H-414,514-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-10yl)phenoxy)hexanoate

The compound 4 ($0.61 \mathrm{~g}, 1 \mathrm{mmol}$), N -hydroxysuccinimide $(0.23 \mathrm{~g}, 2$ $\mathrm{mmlo})$, dimethylaminopyridine(DMAP) ($0.244 \mathrm{~g}, 2 \mathrm{mmol}$) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide ($0.382 \mathrm{~g}, 2 \mathrm{mmol}$) were dissolved in dry dichloromethane at $35^{\circ} \mathrm{C}$ for 2 h . After that, the mixture was washed with $2 \times 10 \mathrm{~mL}$ of water, the organic phase was dried with MgSO_{4} and evaporated in vacuum. The crude product was purified by chromatography on silica gel by using dichloromethane/hexane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm) : $7.87(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 4 \mathrm{H}) 7.07(\mathrm{~d}, \mathrm{~J}=2.4,2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=2.4,2 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4$ H;Ar), 6.6(d, J=4.4, 2H), 4.10(t, J=3.85), 6.88(d, J=4.6, 2H), 3.80 $(\mathrm{s}, 6 \mathrm{H}), 4.10(\mathrm{t}, \mathrm{J}=9.2,2 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=2.5,2 \mathrm{H}), 2.68(\mathrm{~S}, 2 \mathrm{H}), 2.58(\mathrm{~S}, 2 \mathrm{H})$, 2.33(s, 2H),1.78-1.55 (m, 6H) .MALDI-TOF MS calcd for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{BF}_{2} \mathrm{~N}_{3} \mathrm{O}_{7} 707.54$, found 707.8739 .

