Supporting Information for

The influence of CePO₄ nanorods on the CO oxidation activity of Au/GdPO₄-rods

Yu Huanhuan^{a, *}, Chen Fayun^a, Zhubaolin^b, Huang Weiping^b, and Zhang Shoumin^{b,§}

 ^a College of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, P. R. China
 ^b Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), and TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, P. R. China

* Corresponding author. Tel: +8615620206206; E-mail: yuhuanhuan08@163.com

[§] Corresponding author. Tel: +8613920779712; E-mail: zhangsm@nankai.edu.cn

Fig. S1 BET results of CePO₄ nanorods [37]

Fig. S2 TEM images of CePO₄-rods (a), GdPO₄-rods (b), and Ce-GdPO₄-rods (c)

Fig. S3 EDX element analysis of Ce-GdPO₄ nanorods

As shown in Fig.S2, for GdPO₄ support, nearly uniform nanorod with a diameter of about 8-15 nm. The TEM image of CePO₄ showed the presence of CePO₄ nanorods with the diameter of about 15–20 nm. As seen from Fig. S2c, the CePO₄ nanorods were well-dispersed on the surface of GdPO₄ nanorods. Just from the morphology, it's really difficult to distinguish CePO₄ or GdPO₄. From the high-resolution (HR)-TEM images inset of Fig. S2a and b, the lattice fringes of 0.622 and 0.593 nm corresponded to the (100) planes of CePO₄ and (100) planes of GdPO₄, respectively.[39-40,S1-S2] In Fig. S2c, the HRTEM image taken from the interface of two single nanowires

showed the clearly resolved planes of (100). The lattice fringes of 0.617 and 0.576 nm corresponded to CePO₄ and GdPO₄, which were lower than pure CePO₄ and GdPO₄ respectively. Combined with the result of Fig. S3, it could be concluded that the CePO₄ nanorods highly dispersed among GdPO₄ nanorods. And interfaces between CePO₄ and GdPO₄ nanorods were involved in the Ce-GdPO₄ supports. Thus, after Au added, gold nanoparticles could not only deposite on the surfaces of CePO₄ and GdPO₄ and GdPO₄ nanorods but also on the interface of CePO₄-GdPO₄ enhancing the interaction between gold and supports.

Fig. S4 CO₂-TPD profiles of 0.5% Au/CePO₄-rods, 0.5% Au/GdPO₄-rods and 0.5% Au/Ce_{0.25}-GdPO₄-rods calcined at 300 °C for 2 h

As seen in Figure S4, There was little CO_2 absorbed on Au/CePO₄, indicating that 0.5% Au/CePO₄-rods had more basic sites than 0.5% Au/CePO₄-rods and 0.5% Au/Ce_{0.25}-GdPO₄-rods. These basic sites would produced negative impact on responding catalytic activity for CO oxidation of the catalysts.

Catalyst	d (nm)	TOF (s ⁻¹)	Approximate Reaction rate (10 ⁻³ mol s ⁻¹ g ⁻¹ _{cat})	reaction remperature (°C)	Reference
0.5% Au/GdPO ₄ -rods-300	3.84	1.94	2.97	55	This work
0.5% Au/Ce _{0.25} -GdPO ₄ -rods-300	4.03	1.64	2.40	55	This work
0.5% Au/GdPO ₄ -rods-500	8.0	0.28	0.21	100	This work
0.5% Au/Ce _{0.25} -GdPO ₄ -rods-500	5.0	1.77	2.08	100	This work
0.5% Au/CePO ₄ -rods-300	4	0.21	0.31	55	[37]
Au/CeO ₂	~5	/	10.7	55	[33]
Au/LaFeO ₃ -MCF-0.6	~5	/	0.43	50	[18]
Au/Ce-K-OMS-2	7.0	2.3	/	80	[15]
Au/TiO ₂	2.5	2.8	5.1	80	[14]

Table S1 Comparison of the activities of supported Au catalysts for CO oxidation with those reported in literatures

Reference

[S1]W. Wang, X. P. Jiang and K. Z. Chen, *Chem. Commun.*, 2012, 48, 6839-6841
[S2]X. Y. Kuang, H. Liu, W. Y. Hua and Y. Z. Shao, *Dalton Trans.*, 2014, 43, 12321–12328.