Reusable magnetic Pd_x-Co_y nanoalloys confined in mesoporous carbons for green Suzuki-Miyaura reactions

Mohamed Enneiymy^a, Claude Le Drian^a, Camelia Ghimbeu-Mattei^a and Jean-Michel Becht^{*a}

ELECTRONIC SUPPORTING INFORMATION Table of contents

General procedure for the determination of the Pd content of C1-C4	1
Determination of the Pd leached in the reaction medium during the Suzuki reaction	1
¹ H and ¹³ C-NMR Spectra of Compounds 1a-i	2-23
References	24

 ^a M. Enneiymy, Prof. Dr. C. Le Drian, Dr. C. Ghimbeu-Mattei, Dr. J.-M. Becht Université de Haute Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse cedex ; Université de Strasbourg, France. E-mail: jean-michel.becht@uha.fr

General procedure for the determination of the Pd content of C1-C4

Concentrated H_2SO_4 (3 mL) was added to a sample of **C1-C4** (ca. 1 mg, precisely weighted). The mixture was brought to reflux in a fume hood. After cooling to 100 °C, fuming HNO₃ (2 mL) was then added and the heating resumed until disappearance of nitric fumes, complete evaporation of HNO₃ and beginning of the reflux of the remaining H_2SO_4 . After cooling to 100 °C, fuming HNO₃ (2 mL) was then added, the mixture was heated until evaporation of HNO₃ and of most of the H_2SO_4 . Concentrated HNO₃ (3 mL) and concentrated HCl (3 mL) were successively added and the mixture heated until evaporation of the acids. The residue was then dissolved in H_2O (25 mL) and the amount of Pd present in this mixture was determined by complexation following a procedure described in the literature. Two independent experiments were performed and the average value retained.

Determination of the Pd leached in the reaction medium during the Suzuki reaction

After Suzuki reaction, the catalyst **C3** was magnetically recovered and washed with AcOEt (3x15 mL). The combined organic phase was evaporated under high vacuum. Concentrated H_2SO_4 (5 mL) was added to the residue and brought to reflux in a fume hood. After cooling to 100 °C fuming HNO₃ (5 mL) was then slowly added and the heating resumed until disappearance of the nitric fumes, complete evaporation of HNO₃ and beginning of the reflux of the remaining H_2SO_4 . After cooling to 100 °C, fuming HNO₃ (5 mL) was then slowly added, the mixture was heated until evaporation of HNO₃ and this process was repeated twice, the heating of the sample in acids during, as a whole, 15-20 min. Most of the H_2SO_4 was then boiled off, concentrated HNO₃ (3 mL) and concentrated HCI (3 mL) were successively added and the mixture heated until evaporation of the acids. The residue was then dissolved in H_2O (25 mL) and the amount of Pd present in this mixture was determined by complexation following a procedure described in the literature. Two independent experiments were performed and the average value retained.

¹H and ¹³C-NMR Spectra of Biaryls 1a-i

1-(4-Biphenylyl)ethanone (1a): Elution with AcOEt / cyclohexane 5:95 as eluant afforded **1a** as a white solid (95 mg, 97 % yield). ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 2.65 (s, 3H), 7.45 (m, 3H), 7.64 (d, ³J(H,H) = 7.0 Hz, 2H), 7.70 (d, ³J(H,H) = 6.7 Hz, 2H), 8.05 (d, ³J(H,H) = 6.7 Hz, 2H).^{[1] 13}C NMR (75 MHz, CDCl₃) δ (ppm): 26.6, 127.2, 128.0, 128.8, 135.8, 139.8, 145.7, 197.7.

1-(4-(4'-Methyl)biphenylyl)ethanone (1b): Elution with AcOEt / cyclohexane 5:95 afforded **1b** as a white solid (104 mg, 99 % yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.30 (s, 3H), 2.52 (s, 3H), 7.17 (d, ³J(H,H) = 8.1 Hz, 2H), 7.42 (d, ³J(H,H) = 8.1 Hz, 2H), 7.56 (d, ³J(H,H) = 8.3 Hz, 2H), 7.90 (d, ³J(H,H) = 8.3 Hz, 2H).^{[2] 13}C NMR (75 MHz, CDCl₃) δ (ppm): 21.0, 26.5, 126.8, 126.9, 128.8, 129.6, 136.8, 137.6, 145.6, 197.6.

1-(4-(3'-Methyl)biphenylyl)ethanone (1c): Elution with AcOEt / cyclohexane 5:95 afforded **1c** as a white solid (103 mg, 98 % yield). ¹H NMR (300 MHz, $CDCl_3$) δ (ppm): 2.43 (s, 3H), 2.61 (s, 3H), 7.21

(m, 1H), 7.42 (d, m, 3H), 7.65 (d, ${}^{3}J(H,H) = 9$ Hz, 2H), 8.01 (d, ${}^{3}J(H,H) = 9$ Hz, 2H).^[3] ${}^{13}C$ NMR (75 MHz, CDCl₃) δ (ppm): 21.3, 26.4, 124.2, 127.0, 127.1, 128.7, 128.8, 135.6, 138.4, 139.8, 145.6, 197.4. **1-(4-(4'-Methoxy)biphenylyl)ethanone (1d):** Elution with AcOEt / cyclohexane 5:95 afforded **1d** as a white solid (97 mg, 86 % yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 2.62 (s, 3H), 3.86 (s, 3H), 7.00 (d, ${}^{3}J(H,H) = 8.8$ Hz, 2H), 7.58 (d, ${}^{3}J(H,H) = 8.8$ Hz, 2H), 7.64 (d, ${}^{3}J(H,H) = 8.3$ Hz, 2H), 8.00 (d, ${}^{3}J(H,H) = 8.3$ Hz, 2H).^[4] ${}^{13}C$ NMR (75 MHz, CDCl₃) δ (ppm): 26.5, 55.3, 114.3, 126.5, 128.3, 128.9, 132.1, 135.2,

1-(4-(4'-chlorobiphenylyl)ethanone (1e): Elution with AcOEt / cyclohexane 5:95 afforded **1e** as a white solid (114 mg, 99% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.43 (d, ³*J*(H,H) = 8.7 Hz, 2H), 7.55 (d, ³*J*(H,H) = 8.7 Hz, 2H), 7.64 (d, ³*J*(H,H) = 8.1 Hz, 2H), 8.03 (d, ³*J*(H,H) = 8.1 Hz, 2H).^{[5] 13}C NMR (75 MHz, CDCl₃) δ (ppm): 26.6, 126.9, 127.0, 128.5, 129.0, 134.4, 136.1, 138.3, 144.4, 197.5.

145.2, 159.8, 197.6.

1-(4-Biphenylyl)propanone (1f): Elution with AcOEt / cyclohexane 5:95 as eluant afforded **1f** as a white solid (103 mg, 98 % yield). ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 1.26 (t, ³*J*(H,H) = 9 Hz, 3H), 3.04 (q, ³*J*(H,H) = 9 Hz, 2H), 7.45 (m, 3H), 7.67 (m, 4H), 8.04 (d, ³*J*(H,H) = 9 Hz, 2H).^{[6] 13}C NMR (75 MHz, CDCl₃) δ (ppm): 8.3, 31.8, 127.2, 128.5, 128.9, 135.6, 139.9, 145.5, 200.4.

(4-Biphenylyl)phenylmethanone (1g): Elution with AcOEt / cyclohexane 5:95 as eluant afforded **1g** as a white solid (86 mg, 67 % yield). ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 7.45 (m, 5H), 7.66 (m, 5H), 7.90 (m, 4H).^[7] ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 126.9, 127.0, 128.3, 128.9, 130.0, 130.7, 132.3, 136.2, 137.8, 140.0, 145.2, 196.3.

4-Biphenylcarbaldehyde (1h): Elution with AcOEt / cyclohexane 5:95 as eluant afforded **1h** as a white solid (56 mg, 62 % yield). ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 7.45 (m, 4H), 7.63 (d, ³*J*(H,H) = 8.1 Hz, 2H), 7.75 (d, ³*J*(H,H) = 8.1 Hz, 2H), 7.95 (d, ³*J*(H,H) = 8.1 Hz, 2H), 10.06 (s, 1H).^{[7] 13}C NMR (75 MHz, CDCl₃) δ (ppm): 127.1, 127.2, 127.3, 129.0, 130.7, 140.0, 146.5, 171.4, 191.9.

4-Biphenylcarbonitrile (1i): Elution with AcOEt / cyclohexane 5:95 as eluant afforded **1i** as a white solid (89 mg, 99 % yield). ¹H-NMR (300 MHz, CDCl₃) δ (ppm): 7.46 (m, 3H), 7.59 (d, ³*J*(H,H) = 6.8 Hz, 2H), 7.71 (m, 4H).^[7] ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 110.9, 118.9, 127.2, 127.7, 128.6, 129.0, 132.5, 139.1, 145.6.

0

Compound **1g** ¹H NMR, 300 MHz, CDCl₃

Compound **1h** ¹H-NMR, 300 MHz, CDCl₃

Compound **1i** ¹³C-NMR, 75 MHz, CDCl₃

Figure S1.

- [1] C. Diebold, J.-M. Becht, J. Lu, P. H. Toy, C. Le Drian, *Eur. J. Org. Chem.* 2012, 893.
- [2] S. Schweizer, J.-M. Becht, C. Le Drian, Org. Lett. 2007, 9, 3777.
- [3] G. A. Edwards, M. A. Trafford, A. E. Hamilton, A. M. Buxton, M. C. Bardeaux, J. M. Chalker, *J. Org. Chem.* 2014, 2094-2104
- [4] A. Derible, C. Diebold, J. Dentzer, R. Gadiou, J.-M. Becht, C. Le Drian, *Eur. J. Org. Chem.* 2014, 7699.
- [5] J. M. Antelo Miguez, L. Angel Adrio, A. Sousa-Pedrares, J. M. Vila, K. K. Hii, J. Org. Chem. 2007, 72, 7771.
- [6] C. C. Cosner, P. J. Cabrera, K. M. Byrd, A. M. Adams Thomas, P. Helquist, Org. Lett. 2007, 13, 2071.
- [7] L. Ackermann, H. K. Potukuchi, A. Althammer, R. Born, P. Mayer, *Org. Lett.* **2010**, *12*, 1004.