Electronic Supporting Information

Defective MOF Architecture Threaded by Interlaced Carbon Nanotubes for High-Cycling Lithium-Sulfur Batteries

Yujie Pu^{a,b}, Wubin Wu^a, Jianyu Liu^{a,b}, Tao Liu^{a,b}, Fei Ding^{b,*}, Jing Zhang^b and Zhiyuan Tang^{a,*}

- a. Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- b. National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin, 300384, PR China
- c. Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China.

Fig. S 1 SEM morphologies of (a) and (b) Uio-66, (c) and (d) UC-2, (e) and (f) UC-5

Fig. S 2 (a)-(c) SEM and (d) TEM photographies of UC-3 composite.

Table S 1 BET characteristics of CNTs, Uio-66, UC series and S@UC hybrid series and their pore volume and average pore diameters (except CNTs) derived from their 77K N₂ isotherms based on the nonlocal density function theory (NLDFT).

Samples	$S_{\rm BET}/({ m m}^2 \cdot { m g}^{-1})$	V_{total} /(cm ³ ·g ⁻¹)	$D_{ m average}$ / (nm)	
CNTs	278	0.72	12.3	
Uio-66	1157	0.43	1.08	
UC-2	976	0.47	1.33	
UC-3	863	0.56	1.59	
UC-5	738	0.53	1.64	
S@UC-2	17.13	0.058	1.77	
S@UC-3	15.36	0.031	1.85	
S@UC-5	6.62	0.012	4.54	

(Note that all data of CNTs are obtained from its BET characteristics)

Fig. S 3 XRD patterns of Uio-66, S@UC series and sulfur.

Fig. S 4 C 1s and O 1s XPS spectra of (a) and (b) Uio-66, (c) and (d) w/o-UC-3 and (e) and (f) S@UC-3, respectively.

Spectrum	Bond –	Binding energy (eV)		Content (%)		
		w/o-UC-3	UC-3	w/o-UC-3	UC-3	
C 1s	C-C	287.74	284.75	68.27%	67.37%	
	C-0	285.62	285.64	19.01%	18.61%	
	C=O	286.74	286.72	4.81%	4.78%	
	0=C-O	289.46	289.64	7.91%	9.24%	
O 1s	O-Zr	530.8	530.96	7.68%	7.93%	
	Zr-O-C	532	532.06	29.09%	24.49%	
	O-C	532.8	532.82	57.00%	58.34%	
	O=C	533.76	533.92	6.24%	9.24%	

Table S 2 Data obtained from the quantitative analysis for C 1s and O 1s spectra of w/o-UC-3 and
UC-3.

Fig. S 5 Galvanostatic charge-discharge profiles of (a) S@CNTs, (b) S@UC-2 and (c) S@UC-5 as the electrode at $0.5 \text{ A} \cdot \text{g}^{-1}$

Fig. S 6 The disassemble cell pictures of (a) S@UC-3 electrode and (b) S@CNTs electrode after 300 cycles, conducted and obtained in the Ar gas filled glove box (O_2 , $H_2O<0.1$ ppm). The SEM images of (c)-(e) fresh and (f)-(h) cycled S@UC-3 electrode after 300 cycles cleaned by the DOL/DME (1:1) solvent.

Fig. S 7 Cycling performance of the S@CNTs, S@Uio-66 and S@UC-3 electrodes at the current density of $0.1 \text{ A} \cdot \text{g}^{-1}$.

Fig. S 8 Atomic unit model configurations of the intact Uio-66 (top view and side view)

Fig. S 9 Atomic unit model configurations of (a) intact Uio-66 and (b)-(d) defective Uio-66 with one, two and three linker loss (denoted as D_1 -Uio-66, D_2 -Uio-66 and D_3 -Uio-66). Gray, red, white and light blue spheres represent C, O, H and Zr atoms, respectively.

Cathode	Sulfur content in the electrode	Potential range(V)	Maximum capacity (mAh·g ⁻¹)	Average fading Rate	Discharge current density (Cycle number)	Ref.
			1045	0.1.430/	100 mA·g ⁻¹	
S@UC-3	~54%	1.7-2.8	925	0.142%	(100) 500 mΔ·σ ⁻¹	This
				0.055%	(300)	work
			764	0.071%	1000 mA·g ⁻¹ (800)	
S@rGO/MIL100(Cr)	~ 41 %	1.0-3.0	869	0.200 %	0.1C (100)	1
S@ZIF-8	~ 30 %	1.8-2.8	793	0.101 %	0.5C (300)	2
S@Ni-MOF	~ 48 %	1.5-3.0	689	0.094 %	0.2C (200)	3
S@MOF-525(Cu)	~ 42 %	1.5-3.0	1200	0.207 %	0.2C (200)	4
S@rGO/MIL-100(V)	~ 35 %	1.6-3.0	849	0.170 %	0.1C (200)	5
S@HKUST-1/CNTs	$\sim 40 \%$	1.7-2.8	1263	0.080 %	0.2C (500)	6
S@nMOF-867	_	1.7-2.8	907	0.050 %	835 mA·g ⁻¹ (500)	7
S@Cd-MOF	~ 50 %	1.5-2.8	1092	0.537 %	0.1C (50)	8

Table S 3 Performance comparisons of the representative MOFs-based sulfur electrodes (1C=1675 $mA \cdot g^{-1}$).

Note that average fading rate is calculated based on the formula:

$$\frac{(\mathrm{C}_{_{\mathrm{Max}}}-\mathrm{C}_{_{\mathrm{Ret}}})/\mathrm{C}_{_{\mathrm{Max}}}}{\mathrm{N}}\times100\%$$

 C_{Max} represents the maximum capacity, C_{Ret} represents the capacity retention after cycling, N represents the cycling numbers.

Sulfur Maximum Discharge current content Potential /Final MOFs Cathode density Ref. in the range (V) Capacity (Cycle number) electrode $(mAh \cdot g^{-1})$ 925/765 500 mA·g⁻¹ (300) This S@UC-3 ~ 54% 1.7-2.8 work 1000 mA·g⁻¹ (800) 764/486 9 GS-S/C_{ZIF8-D} ~ 38 % 1.0-3.0 1171/561 $168 \text{ mA} \cdot \text{g}^{-1}$ (120) C-S-3 ~ 22 % 1.0-3.0 1655/936 $335 \text{ mA} \cdot \text{g}^{-1}$ (100) 10 11 0.1C (100) ZIF-8 S/N3-C $\sim 46 \%$ 1.0-3.0 1500/800 0.2C (1000) 12 OCNTA/S ~ 56 % 1.7-2.6 1037/487 13 ~ 56 % 1.7-2.8 887/587 0.5C (300) S/ZIF-8-NS-C 14 $300 \text{ mA} \cdot \text{g}^{-1} (300)$ ~ 50 % 1.8-2.6 RGO/C-Co-S 1218/949 **ZIF-67** NC-800-S60 ~45 % 1.7-2.8 1124/511 $800 \text{ mA} \cdot \text{g}^{-1}$ (400) 15 16 $\sim 49~\%$ S@Co-N-GC 1.7-2.7 1440/850 0.2C (200) 17 MWCNT@Meso-C/S $\sim 47 \%$ 1.5-3.0 1343/540 0.5C (50) 18 MCP-950/S $\sim 63 \%$ 1.8-2.8 1274/1041 0.2C (50) 19 MOF-5 MPCN-S ~ 56 % 1.7-2.8 1000/740 0.5C (200) S-Zn-MOF ~ 35 % 1476/609 0.2C (200) 20 1.7-2.6 21 GO@Meso-C/S $\sim 64 \%$ 1.8-2.7 0.2C (100) 1122/825 22 Al-MOF ~46 % S/FLHPC 1.5-2.8 1100/751 0.5C (200)

 Table S 4 Cycling performance comparisons of UC-3 with several representative MOF-derived

 porous Carbon materials as the sulfur hosts for Li-S batteries

Table S 5 Cycling stability comparisons of UC-3 with several representative polar materials as the sulfur host in Li-S batteries ($1C=1675 \text{ mA} \cdot \text{g}^{-1}$).

Polar host material	Sulfur content in the electrode	Fading rate	Discharge current density	Cycle number	Ref.
UC-3	~ 54 %	0.055%	500 mA·g ⁻¹	300	This
		0.071%	1000 mA·g ⁻¹	800	work
TiO ₂	~ 53 %	0.033 %	0.5C	1000	23
Ti ₄ O ₇	$\sim 48 \%$	0.060 %	2C	400	24
TiO	~ 56 %	0.082 %	0.5C	500	25
MnO_2	~ 56 %	0.028 %	0.5C	1500	26
VO ₂	$\sim 60 \%$	0.058 %	0.5C	1000	27
Nb ₂ O ₅	$\sim 48 \%$	0.146 %	0.5C	200	28
TiN	~ 50 %	0.070 %	0.5C	500	29
VN	~ 56 %	0.094 %	1C	200	30
TiS ₂	$\sim 33\% \ Li_2S$	0.058 %	0.5C	400	31
CoS ₂	$\sim 60 \%$	0.034 %	2C	2000	32
Co_3S_4	~ 53%	0.080 %	1C	450	33
Co ₈ S ₉	$\sim 60 \%$	0.045 %	0.5C	1500	34
WS_2	~ 11 %	0.031 %	0.5C	500	35
MXene	~ 56 %	0.050 %	0.5C	650	36

References:

- 1. Z. Zhao, S. Wang, R. Liang, Z. Li, Z. Shi and G. Chen, J. Mater. Chem. A, 2014, 2, 13509-13512.
- J. Zhou, R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang and X. Li, *Energy Environ*. *Sci.*, 2014, 7, 2715.
- J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J.-G. Zhang, J. Liu and J. Xiao, *Nano Lett.*, 2014, 14, 2345-2352.
- 4. Z. Wang, B. Wang, Y. Yang, Y. Cui, Z. Wang, B. Chen and G. Qian, ACS Appl. Mater. Interfaces, 2015, 7, 20999-21004.
- 5. Y. Hou, H. Mao and L. Xu, *Nano Research*, 2017, **10**, 344-353.
- 6. Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang, X. Peng and Z. Lin, *Nat. Commun.*, 2017, **8**, 14628.
- J. H. Park, K. M. Choi, D. K. Lee, B. C. Moon, S. R. Shin, M.-K. Song and J. K. Kang, *Sci. Rep-Uk*, 2016, 6, 25555.
- M.-T. Li, Y. Sun, K.-S. Zhao, Z. Wang, X.-L. Wang, Z.-M. Su and H.-M. Xie, ACS Appl. Mater. Interfaces, 2016, 8, 33183-33188.
- 9. R. Chen, T. Zhao, T. Tian, S. Cao, P. R. Coxon, K. Xi, D. Fairen-Jimenez, R. Vasant Kumar and A. K. Cheetham, *APL Mater.*, 2014, **2**, 124109.
- 10. Z. Li and L. Yin, ACS Appl. Mater. Interfaces, 2015, 7, 4029-4038.
- 11. X. Li, Q. Sun, J. Liu, B. Xiao, R. Li and X. Sun, J. Power Sources, 2016, 302, 174-179.
- P. Zuo, H. Zhang, M. He, Q. Li, Y. Ma, C. Du, X. Cheng, H. Huo, Y. Gao and G. Yin, *Carbon*, 2017, **122**, 635-642.
- 13. Y. Jiang, H. Liu, X. Tan, L. Guo, J. Zhang, S. Liu, Y. Guo, J. Zhang, H. Wang and W. Chu,

ACS Appl. Mater. Interfaces, 2017, 9, 25239-25249.

- Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang and L. Yin, *Nano Energy*, 2016, 23, 15-26.
- 15. J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan and S. Xiong, Adv. Energy Mater., 7, 1701330-n/a.
- 16. Y.-J. Li, J.-M. Fan, M.-S. Zheng and Q.-F. Dong, *Energy Environ. Sci.*, 2016, 9, 1998-2004.
- 17. W. Bao, Z. Zhang, C. Zhou, Y. Lai and J. Li, J. Power Sources, 2014, 248, 570-576.
- S. Cai, X. Wang, M. Chen, J. Liu, Q. Lu and S. Wei, J. Electrochem. Soc., 2016, 163, A2922-A2929.
- X. Qian, L. Jin, S. Wang, S. Yao, D. Rao, X. Shen, X. Xi and J. Xiang, *RSC Adv.*, 2016, 6, 94629-94635.
- 20. P. M. Shanthi, P. J. Hanumantha, B. Gattu, M. Sweeney, M. K. Datta and P. N. Kumta, *Electrochim. Acta*, 2017, **229**, 208-218.
- 21. W. Bao, Z. Zhang, W. Chen, C. Zhou, Y. Lai and J. Li, *Electrochim. Acta*, 2014, **127**, 342-348.
- 22. X. Yang, N. Yan, W. Zhou, H. Zhang, X. Li and H. Zhang, J. Mater. Chem. A, 2015, 3, 15314-15323.
- 23. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu and Y. Cui, *Nat. Commun.*, 2013, **4**, 1331.
- 24. Q. Pang, D. Kundu, M. Cuisinier and L. F. Nazar, Nat. Commun., 2014, 5, 4759.
- 25. Z. Li, J. Zhang, B. Guan, D. Wang, L. M. Liu and X. W. Lou, Nat. Commun., 2016, 7, 13065.
- 26. X. Wang, G. Li, J. Li, Y. Zhang, A. Wook, A. Yu and Z. Chen, Energy Environ. Sci., 2016, 9,

2533-2538.

- X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek and L. F. Nazar, *Adv. Energy Mater.*, 2016, 6, 1501636-n/a.
- Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling and D. Long, *Energy Environ. Sci.*, 2016, 9, 3230-3239.
- 29. Z. Cui, C. Zu, W. Zhou, A. Manthiram and J. B. Goodenough, *Adv. Mater.*, 2016, **28**, 6926-6931.
- 30. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng and F. Li, *Nat. Commun.*, 2017, **8**, 14627.
- 31. Z. W. Seh, J. H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang and Y. Cui, *Nat. Commun.*, 2014, **5**, 5017.
- 32. Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei and Q. Zhang, *Nano Lett.*, 2016, **16**, 519-527.
- 33. H. Xu and A. Manthiram, *Nano Energy*, 2017, **33**, 124-129.
- 34. Q. Pang, D. Kundu and L. F. Nazar, *Mater. Horiz.*, 2016, **3**, 130-136.
- 35. T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li and J. Xiong, Adv. Energy Mater., 2017, 7, 1601843-n/a.
- 36. X. Liang, A. Garsuch and L. F. Nazar, Angew. Chem. Int. Ed., 2015, 54, 3907-3911.