Supporting Information

Copper-Catalyzed Aerobic Decarboxylative Coupling between

Cyclic a-Amino Acids and Diverse C–H Nucleophiles with Low

Catalyst Loading

Jing Guo,^a Ying Xie,^a Qiao-Lei Wu,^a Wen-Tian Zeng,^a Albert S. C. Chan,^a Jiang Weng,^a,* and Gui Lu^a,*

^a Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China

E-mail: lugui@mail.sysu.edu.cn; wengj2@mail.sysu.edu.cn

Table of Contents

1. General information	S2
 General Procedure for the Synthesis of Substrates Mass Spectrum of Reactive Intermediates 	S2
	S4
4. Characterization Data of Products	S4
5. References	S15
6. Copies of ¹ H and ¹³ C NMR Spectra of New Products	S16

1. General information

All the commercial reagents were used as such without further purification. All solvents were used as commercial anhydrous grade without further purification. The flash column chromatography was carried out over silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-400 MHz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm, δ) downfield from the internal standard Me₄Si (TMS, $\delta = 0$ ppm). Chemical shifts in ¹³C NMR spectra were reported relative to the central line of the chloroform signal ($\delta = 77.0$ ppm). Peaks were labeled as singlet (s), doublet (d), triplet (t), quartet (q), and multiplet (m). High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. Chemical yields refer to pure isolated substances.

2. General Procedure for the Synthesis of Substrates

(a) General synthetic method of proline derivatives^[1]

To a dry 250 mL round-bottom flask, proline (17.3 g, 150 mmol) and potassium hydroxide (25.4 g, 450 mmol) were dissolved in isopropanol (150 mL) and heated to 40 °C. Benzyl chloride (18.9 mL, 160 mmol) was added over 3 h via syringe pump. The mixture was stirred for an additional 5 h (8 h in total), then cooled to room temperature. Concentrated HCl was added to adjust the pH to 4-5. Chloroform (40 mL) was added and the solution was allowed to stir at room temperature for 10 h. The formed white precipitate was filtered off and washed with chloroform (3×20 mL). The resulting organic solution was combined and concentrated under reduced pressure. The residue was further washed with acetone (4×20 mL), dried over P_2O_5 to afford crude benzylated acid as yellow solid.

(b) General procedure for the synthesis of products

To a solution of **1a** (82 mg, 0.4 mmol) and **2a** (23.4 mg, 0.2 mmol) in toluene (2 mL) was added $Cu_2(OH)_2CO_3$ (0.44 mg, 0.002 mmol) and DBU (91.2 mg. 0.6 mmol). The reaction mixture was stirred at 110 °C for 24 h under air, then extracted with ethyl acetate. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to afford compound **3a**.

(c) Synthesis of IBR2 analogue 4a^[2]

3aq (67.7 mg, 0.2 mmol), HCl (2.0 *N*, 1.25 mL, 0.24 mmol), palladium hydroxide on carbon (23 mg, 40 wt%) and EtOH/EtOAc (3:1, 2 mL) were added into a round-bottom flask. The hydrogenolysis was performed at room temperature under H₂ (1 atm) for 24 h. After carefully releasing the hydrogen, aqueous NaHCO₃ was added and the mixture was stirred for 30 min. The organic layer was extracted with CH₂Cl₂ for three times, the combined organic extracts were dried over Na₂SO₄ and concentrated *in vacuo* to afford crude product.

The above crude product, DMAP (3 mg), DIPEA (0.24 mmol) and CH_2Cl_2 (3 mL) were added into a round-bottom flask at 0 °C. Then a solution of BnSO₂Cl (0.24 mmol) in CH_2Cl_2 (2 mL) was added dropwise. The resulting mixture was stirred at room temperature for 15 min, then concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford **4a** (68 mg, 85%) as a white foam.

3. Mass Spectrum of Reactive Intermediates

4. Characterization Data of New Products

3-(1-Benzylpyrrolidin-2-yl)-1*H***-indole (3a)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 35.8 mg, 65%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data; ¹H NMR (400 MHz, chloroform-*d*) δ: 7.99 (s, 1H), 7.81 (m, 1H), 7.30–7.25 (m, 1H), 7.19–7.15 (m, 5H), 7.13–7.09 (m, 2H), 7.05 (m, 1H), 3.93 (m, 1H), 3.63 (m, 1H), 3.09–2.95 (m, 2H), 2.17–2.09 (m, 2H), 1.98 (m, 1H), 1.91–1.83 (m, 1H), 1.78–1.70 (m, 1H).

3-(1-Benzylpyrrolidin-2-yl)-2-methyl-1*H***-indole (3b)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 40.6 mg, 70%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data; ¹H NMR (400 MHz, chloroform-*d*) δ : 8.16–7.91 (m, 1H), 7.75 (s, 1H), 7.36–7.25 (m, 5H), 7.23 (m, 1H),

7.21–7.13 (m, 2H), 3.95 (m, 1H), 3.65 (m, 1H), 3.17 (m, 1H), 3.01 (m, 1H), 2.51 (s, 3H), 2.26–2.09 (m, 3H), 2.09–1.96 (m, 1H), 1.92–1.80 (m, 1H).

3-(1-Benzylpyrrolidin-2-yl)-4-methyl-1*H***-indole (3c)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 35.4 mg, 61%. Yellow oil. ¹H NMR (500 MHz, chloroform-*d*) δ : 8.08 (s, 1H), 7.35 (d, *J* = 21.8 Hz, 4H), 7.23 (d, *J* = 7.8 Hz, 3H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.87 (d, *J* = 7.1 Hz, 1H), 4.15 (s, 1H), 3.99 (s, 1H), 3.13 (m, 2H), 2.75 (s, 3H), 2.44–2.09 (m, 2H), 1.93–1.67 (m, 3H). ¹³C NMR (126 MHz, chloroform-*d*) δ : 140.1, 137.0, 130.6, 128.7, 128.7, 128.2, 128.2, 126.7, 125.9, 121.8, 121.2, 121.2, 109.1, 62.7, 58.7, 53.6, 35.8, 22.3, 21.4. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₀H₂₃N₂: 291.1856; found: 291.1869.

3-(1-Benzylpyrrolidin-2-yl)-5-methyl-1*H***-indole (3d)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 30.8 mg, 53%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data; ¹H NMR (400 MHz, chloroform-*d*) δ : 7.91 (s, 1H), 7.58 (s, 1H), 7.27–7.15 (m, 5H), 7.13 (m, 2H), 6.95 (m, 1H), 3.96 (s, 1H), 3.59 (m, 1H), 3.13–2.86 (m, 2H), 2.41 (s, 3H), 2.18–2.05 (m, 2H), 1.95 (m, 2H), 1.73 (m, 1H).

3-(1-Benzylpyrrolidin-2-yl)-5-chloro-1*H***-indole (3e)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 42.1 mg, 68%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data; ¹H NMR (400 MHz, chloroform-*d*) δ : 8.12 (s, 1H), 7.88 (m, 1H), 7.33–7.06 (m, 8H), 3.94 (m, 1H), 3.62 (m, 1H), 3.29–2.85 (m, 2H), 2.18 (m, 2H), 2.07–1.78 (m, 3H).

3-(1-Benzylpyrrolidin-2-yl)-5-fluoro-1*H***-indole (3f)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 42.3 mg, 72%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.13 (s, 1H), 7.56 (m, 1H), 7.39–7.07 (m, 7H), 6.93 (m, 1H), 3.94 (s, 1H), 3.60 (d, *J* = 8.0 Hz, 1H), 3.18–2.90 (m, 2H), 2.27–2.05 (m, 2H), 2.04–1.63 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 158.6, 156.3, 140.0, 133.4, 128.8, 128.8, 128.1, 128.1, 127.0 (d, *J* = 40.0 Hz), 126.9, 126.7, 124.0, 118.1 (d, *J* = 16.0 Hz), 111.8 (d, *J* = 40.0 Hz), 110.5 (d, *J* = 104.0 Hz), 105.3 (d, *J* = 92.0 Hz), 62.4, 58.4, 53.5, 32.8, 22.3. ¹⁹F NMR (376 MHz, chloroform-*d*) δ : -124.85 (m, 1F). ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₁₉H₂₀FN₂: 295.1605; found: 295.1616.

3-(1-Benzylpyrrolidin-2-yl)-5-bromo-1*H***-indole (3g)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 51.6 mg, 73%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.02 (s, 1H), 7.97 (m, 1H), 7.23–7.14 (m, 5H), 7.14–7.08 (m, 3H), 3.86 (m, 1H), 3.54 (m, 1H), 3.09–2.85 (m, 2H), 2.20–2.02 (m, 2H), 1.94–1.80 (m, 2H), 1.75–1.67 (m, 1H).

3-(1-Benzylpyrrolidin-2-yl)-5-nitro-1*H***-indole (3h)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 47.5 mg, 74%. Yellow oil. ¹H NMR (500 MHz, chloroform-*d*) δ : 8.93 (s, 1H), 8.59 (s, 1H), 8.11 (d, J = 8.9 Hz, 1H), 7.44–7.30 (m, 2H), 7.29–7.12 (m, 5H), 3.93 (d, J = 13.2 Hz, 1H), 3.71 (s, 1H), 3.24–2.90 (m, 2H), 2.22 (m, 2H), 2.06–1.91 (m, 2H), 1.84 (q, J = 10.4 Hz, 1H). ¹³C NMR (126 MHz, chloroform-*d*) δ : 141.3, 139.9, 139.7, 128.6, 128.6, 128.2, 128.2, 126.7, 125.9, 125.1, 121.1, 117.8, 117.8, 111.1, 62.1, 58.4, 53.5, 33.5, 22.3. ESI-HRMS: m/z [M+H]⁺ calcd. for C₁₉H₂₀N₃O₂: 322.1550; found: 322.1566.

3-(1-Benzylpyrrolidin-2-yl)-6-methyl-1*H***-indole (3i)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 34.8 mg, 60%. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.09 (s, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.40–7.08 (m, 7H), 6.98 (m, 1H), 4.03 (d, *J* = 13.0 Hz, 1H), 3.76 (s, 1H), 3.14 (d, *J* = 11.0 Hz, 2H), 2.47 (s, 3H), 2.35–1.74 (m, 5H). ¹³C NMR (101 MHz, chloroform-*d*) δ: 137.2, 131.9, 129.1, 129.1, 128.7, 128.2, 128.2, 127.0, 124.5, 122.0, 121.2, 119.5, 111.3, 111.3, 62.7, 58.2, 53.4, 32.7, 22.0, 21.7. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₀H₂₃N₂: 291.1856; found: 291.1865.

3-(1-Benzylpyrrolidin-2-yl)-7-methyl-1*H***-indole (3j)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 35.9 mg, 62%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.99 (s, 1H), 7.77–7.67 (m, 1H), 7.29–7.22 (m, 5H), 7.19 (m, 1H), 7.07–6.97 (m, 2H), 4.01 (d, *J* = 13.1 Hz, 1H), 3.70 (m, 1H), 3.19–2.98 (m, 2H), 2.49 (s, 3H), 2.24–2.17 (m, 2H), 2.07–1.87 (m, 3H).

7-(1-Benzylpyrrolidin-2-yl)-4-chloro-5H-pyrrolo[3,2-d] pyrimidine (3k). The general method was followed. Purification by chromatography (50% EtOAc/PE) provided pure product. Yield: 54.9 mg, 88%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.81 (s, 1H), 7.76 (s, 1H), 7.35–7.16 (m, 5H), 3.95 (m, 1H), 3.30 (m, 1H), 3.16 (m, 1H), 2.95 (m, 1H), 2.44–2.25 (m, 2H), 2.02–1.83 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 149.9, 149.8, 142.5, 139.4, 129.9, 128.6, 128.6, 128.1, 128.1, 126.1, 125.2, 120.6, 59.8, 58.6, 53.6, 33.6, 22.4. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₁₇H₁₈ClN₄: 313.1215; found: 313.1227.

2-(1-Benzylpyrrolidin-2-yl)naphthalen-1-ol (3l). The general method was followed. Purification by chromatography (2% EtOAc/PE) provided pure product. Yield: 53.9 mg, 89%. Colorless oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.39–8.31 (m, 1H), 7.83–7.74 (m, 1H), 7.55–7.43 (m, 2H), 7.41–7.28 (m, 5H), 7.27 (s, 1H), 7.17 (m, 1H), 4.12 (d, *J* = 12.7 Hz, 1H), 3.76 (m, 1H), 3.25 (d, *J* = 12.7 Hz, 1H), 3.16 (m, 1H), 2.44–2.21 (m, 2H), 2.09–1.88 (m, 3H).

1-(1-Benzylpyrrolidin-2-yl)naphthalen-2-ol (3m). The general method was followed. Purification by chromatography (2% EtOAc/PE) provided pure product. Yield: 50.9 mg, 84%.

Colorless oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ: 8.05 (s, 1H), 7.93 (m, 1H), 7.43–7.37 (m, 1H), 7.32–7.25 (m, 5H), 7.22 (m, 2H), 7.16 (m, 1H), 4.04 (m, 1H), 3.73 (m, 1H), 3.19–3.00 (m, 2H), 2.32–2.15 (m, 2H), 2.13–1.92 (m, 2H), 1.90–1.78 (m, 1H).

1-Benzyl-2-(phenylethynyl)pyrrolidine (3n). The general method was followed. Purification by chromatography (1-2% EtOAc/PE) provided pure product. Yield: 37.1 mg, 71%. Colorless oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.50–6.90 (m, 10H), 3.97 (m, 1H), 3.52 (m, 2H), 2.46 (m, 1H), 2.13–1.51 (m, 5H).

1-Benzyl-2-(*p*-tolylethynyl)pyrrolidine (30). The general method was followed. Purification by chromatography (1-2% EtOAc/PE) provided pure product. Yield: 38.5 mg, 70%. Colorless oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.52–7.45 (m, 2H), 7.37–7.26 (m, 5H), 7.16 (m, 2H), 4.04 (m, 1H), 3.74–3.50 (m, 2H), 2.81 (m,1H), 2.57 (m,1H), 2.36 (s, 3H), 2.27–2.10 (m, 1H), 2.12–2.03 (m, 1H), 2.00–1.88 (m, 1H), 1.89–1.78 (m, 1H).

1-Benzyl-2-((4-fluorophenyl)ethynyl)pyrrolidine (3p). The general method was followed. Purification by chromatography (1-2% EtOAc/PE) provided pure product. Yield: 41.8 mg, 75%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.46–7.35 (m, 3H), 7.31 (m, 2H), 7.27–7.23 (m, 2H), 7.04–6.95 (m, 2H), 4.05 (m, 1H), 3.68–3.45 (m, 2H), 2.78 (m, 1H), 2.54 (m, 1H), 2.31–2.09 (m, 1H), 2.07–1.79 (m, 3H).

Benzyl-2-(nitromethyl)pyrrolidine (3q). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 33.9 mg, 77%. Colorless oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.31–7.12 (m, 5H), 4.25 (m, 1H), 4.17 (m, 1H), 3.82 (d, *J* = 13.0 Hz, 1H), 3.46

(d, *J* = 13.0 Hz, 1H), 3.25 (m, 1H), 2.88 (m, 1H), 2.36–2.17 (m, 1H), 2.09–1.85 (m, 1H), 1.80–1.60 (m, 3H).

2-(1-Benzylpyrrolidin-2-yl)-1-phenylethan-1-one (3r). The general method was followed. Purification by chromatography (30% EtOAc/PE) provided pure product. Yield: 30.1 mg, 54%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.92 (d, *J* = 7.0 Hz, 1H), 7.61–7.51 (m, 1H), 7.45 (m, 2H), 7.37–7.24 (m, 6H), 3.98 (m, 1H), 3.43–3.23 (m, 2H), 3.11 (m, 1H), 3.06–2.90 (m, 2H), 2,09–2.07 (m, 2H), 1.72 (m, 3H).

3-(1-Benzylpiperidin-2-yl)-5-methyl-1*H***-indole (3x)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 37.7 mg, 62%. Colorless oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.87 (s, 1H), 7.76 (s, 1H), 7.25–7.17 (m, 5H), 7.16–7.12 (m, 1H), 7.10 (d, *J* = 2.2 Hz, 1H), 6.99 (m, 1H), 3.95 (d, *J* = 13.4 Hz, 1H), 3.43 (m, 1H), 3.00 (m, 1H), 2.86 (d, *J* = 13.4 Hz, 1H), 2.48 (s, 3H), 1.98 (m, 2H), 1.88–1.75 (m, 2H), 1.62 (m, 2H), 1.46–1.35 (m, 1H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 140.2, 134.9, 129.0, 129.0, 128.3, 127.9, 127.9, 126.8, 126.4, 123.6, 121.9, 120.0, 119.6, 110.8, 61.4, 59.8, 53.8, 35.5, 26.2, 25.5, 21.6. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₁H₂₅N₂: 305.2012; found: 305.2025.

3-(1-Benzylpiperidin-2-yl)-1*H***-indole (3y)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 37.7 mg, 65%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.26 (s, 1H), 7.86 (m, 1H), 7.29 (m, 1H), 7.20–7.01 (m, 8H), 3.92 (m, 1H), 3.48 (m, 1H), 2.96 (m, 2H), 2.01 (d, *J* = 30.3 Hz, 2H), 1.84–1.52 (m, 5H).

3-(1-Benzylpiperidin-2-yl)-5-fluoro-1*H***-indole (3z)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 40.6 mg, 66%.

Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.99 (s, 1H), 7.69 (m, 1H), 7.40–7.01 (m, 7H), 6.91 (m, 1H), 3.90 (d, *J* = 13.4 Hz, 1H), 3.37 (dd, *J* = 11.3, 2.6 Hz, 1H), 2.91 (dd, *J* = 52.8, 12.4 Hz, 2H), 2.14–1.51 (m, 6H), 1.40 (m, 1H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 158.7, 156.3, 140.0, 133.1, 128.9, 128.0, 128.0, 126.7 (d, *J* = 40.0 Hz), 126.5, 123.5, 120.3 (d, *J* = 8.0 Hz), 111.7 (d, *J* = 40.0 Hz), 110.6 (d, *J* = 108.0 Hz), 105.6 (d, *J* = 96.0 Hz), 61.5, 59.8, 53.7, 35.1, 26.1, 25.4. ¹⁹F NMR (376 MHz, chloroform-*d*) δ : -124.77 (s, 1F). ESI-HRMS: *m*/*z* [M+H]⁺ calcd. for C₂₀H₂₂FN₂: 309.1762; found: 309.1776.

3-(1-Benzylpiperidin-2-yl)-5-nitro-1*H***-indole (3aa)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 46.9 mg, 70%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 9.06 (d, J = 2.2 Hz, 1H), 8.51 (s, 1H), 8.08 (m, 1H), 7.58–6.72 (m, 7H), 3.86 (d, J = 13.5 Hz, 1H), 3.49 (m, 1H), 3.17–2.68 (m, 2H), 2.17–1.53 (m, 6H), 1.44 (m, 1H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 141.4, 139.7, 139.6, 128.6, 128.6, 128.1, 128.1, 126.6, 125.7, 124.6, 122.9, 118.1, 117.8, 111.1, 61.3, 59.9, 53.7, 35.6, 26.0, 25.2. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₀H₂₂N₃O₂: 336.1707; found: 336.1722.

2-(1-Benzylpiperidin-2-yl)naphthalen-1-ol (3ab). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 31.7 mg, 50%. Colorless oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 11.86 (s, 1H), 8.59–8.10 (m, 1H), 7.76 (m, 1H), 7.56–7.39 (m, 2H), 7.38–7.21 (m, 6H), 7.13 (d, J = 8.2 Hz, 1H), 4.07 (d, J = 12.9 Hz, 1H), 3.39 (m, 1H), 3.07 (dd, J = 12.3, 4.3 Hz, 2H), 2.11–1.74 (m, 4H), 1.72–1.49 (m, 2H), 1.46–1.28 (m, 1H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 151.6, 136.7, 133.7, 129.9, 129.9, 128.3, 128.3, 127.3, 126.3, 125.9, 125.2, 124.8, 122.3, 120.5, 118.8, 68.4, 60.3, 52.2, 32.8, 25.5, 24.4. ESI-HRMS: m/z [M+H]⁺ calcd. for C₂₂H₂₄NO: 318.1852; found: 318.1866.

1-(1-Benzylpiperidin-2-yl)naphthalen-2-ol (3ac). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 50.7 mg, 80%. Colorless oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 12.33 (s, 1H), 7.89 (d, J = 8.6 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.46 (m, 1H), 7.37–7.20 (m, 6H), 7.17 (d, J = 8.8 Hz, 1H), 4.15 (dd, J = 10.0, 5.2 Hz, 1H), 4.06 (d, J = 13.0 Hz, 1H), 3.09 (dd, J = 21.4, 12.3 Hz, 2H), 2.06 (m, 1H), 1.97–1.77 (m, 3H), 1.76–1.52 (m, 2H), 1.43 (m, 1H). ¹³C NMR (101 MHz,

chloroform-*d*) δ : 154.7, 136.5, 131.9, 130.0, 130.0, 129.0, 129.0, 128.8, 128.4, 128.4, 127.4, 126.4, 122.5, 120.8, 119.5, 117.8, 62.6, 60.1, 52.5, 31.0, 25.5, 24.5. ESI-HRMS: *m*/*z* [M+H]⁺ calcd. for C₂₂H₂₄NO: 318.1852; found: 318.1859.

1-Benzyl-2-(phenylethynyl)piperidine (3ad). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 39.6 mg, 72%. Colorless oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.52–7.44 (m, 2H), 7.39 (d, *J* = 7.0 Hz, 2H), 7.31 (m, 5H), 7.25 (d, *J* = 1.5 Hz, 1H), 3.68 (m, 3H), 2.75–2.58 (m, 1H), 2.52 (m, 1H), 1.83 (m, 2H), 1.78–1.64 (m, 2H), 1.58 (m, 2H).

3-(1-(4-Methylbenzyl)pyrrolidin-2-yl)-1*H***-indole (3ae)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 38.8 mg, 67%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.16 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.48–7.34 (m, 1H), 7.32–7.05 (m, 7H), 4.03 (d, *J* = 13.0 Hz, 1H), 3.88–3.59 (m, 1H), 3.34–2.93 (m, 2H), 2.37 (s, 3H), 2.29–2.21 (m, 2H), 2.14–1.96 (m, 2H), 1.84 (m, 1H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 136.8, 136.8, 136.1, 128.9, 128.9, 128.8, 128.8, 126.8, 122.1, 122.0, 120.1, 119.2, 118.0, 111.2, 62.2, 58.0, 53.4, 33.1, 22.2, 21.1. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₀H₂₃N₂: 291.1856; found: 291.1866.

3-(1-(4-Bromobenzyl)pyrrolidin-2-yl)-1*H***-indole (3af)**. The general method was followed. Purification by chromatography (25% EtOAc/PE) provided pure product. Yield: 51.1 mg, 72%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.02 (s, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.33 (m, 3H), 7.24–7.16 (m, 1H), 7.16–7.05 (m, 4H), 3.89 (m, 1H), 3.75–3.52 (m, 1H), 3.06 (m, 1H), 2.99 (d, *J* = 13.2 Hz, 1H), 2.23–2.09 (m, 2H), 2.08–1.97 (m, 1H), 1.97–1.85 (m, 1H), 1.80 (m, 1H).

3-(1-(4-Fluorobenzyl)pyrrolidin-2-yl)-1*H***-indole (3ag)**. The general method was followed. Purification by chromatography (2% EtOAc/PE) provided pure product. Yield: 41.2 mg, 70%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.23 (s, 1H), 7.86 (s, 1H), 7.58–7.05 (m, 6H), 6.91 (m, 2H), 3.93 (d, *J* = 13.0 Hz, 1H), 3.71 (m, 1H), 3.06 (s, 2H), 2.39–1.71 (m, 5H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 163.1, 160.7, 136.8, 134.6, 130.5 (d, *J* = 36.0 Hz), 126.7, 122.5, 122.1, 122.1, 119.9, 119.3, 119.3, 115.0 (d, *J* = 88.0 Hz), 111.3, 62.2, 57.1, 53.0, 32.8, 22.1. ¹⁹F NMR (376 MHz, chloroform-*d*) δ : -116.52 (s, 1F). ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₁₉H₂₀FN₂: 295.1605; found: 295.1614.

2-(1-(4-Methylbenzyl)pyrrolidin-2-yl)naphthalen-1-ol (3ah). The general method was followed. Purification by chromatography (1-2% EtOAc/PE) provided pure product. Yield: 58.3 mg, 92%. Colorless oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 12.46 (s, 1H), 8.54–7.92 (m, 1H), 7.84–7.50 (m, 1H), 7.34 (m, 2H), 7.20 (d, *J* = 8.2 Hz, 1H), 7.13–6.89 (m, 5H), 3.91 (d, *J* = 12.6 Hz, 1H), 3.55 (t, *J* = 8.4 Hz, 1H), 3.18–2.75 (m, 2H), 2.43–1.96 (m, 5H), 1.98–1.43 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 152.8, 137.1, 134.3, 134.0, 129.4, 129.4, 129.2, 129.2, 127.4, 127.0, 126.0, 125.6, 124.8, 122.4, 118.2, 117.6, 70.0, 57.9, 52.5, 32.84, 22.5, 21.2. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₂H₂₄NO: 318.1852; found:318.1866.

2-(1-(4-Bromobenzyl)pyrrolidin-2-yl)naphthalen-1-ol (3ai). The general method was followed. Purification by chromatography (1-2% EtOAc/PE) provided pure product. Yield: 66.3 mg, 87%. Yellow oil. ¹H NMR (500 MHz, chloroform-*d*) δ : 12.32 (s, 1H), 8.30 (d, *J* = 7.5 Hz, 1H), 7.76 (d, *J* = 7.2 Hz, 1H), 7.58–6.84 (m, 8H), 4.01 (m, 1H), 3.70 (s, 1H), 3.40–2.89 (m, 2H), 2.46–2.13 (m, 2H), 2.13–1.68 (m, 3H). ¹³C NMR (126 MHz, chloroform-*d*) δ : 152.5, 136.4, 133.9, 131.6, 131.6, 131.1, 131.1, 127.3, 126.8, 126.0, 125.4, 124.9, 122.2, 121.5, 118.3, 117.2, 70.2, 57.6, 52.5, 32.6, 22.4. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₁H₂₁BrNO: 382.0801; found: 382.0811.

2-(1-(4-Fluorobenzyl)pyrrolidin-2-yl)naphthalen-1-ol (3aj). The general method was followed. Purification by chromatography (1-2% EtOAc/PE) provided pure product. Yield: 52 mg, 81%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ: 12.32 (s, 1H), 8.61–7.95 (m, 1H), 7.91–7.49 (m, 1H), 7.50–6.42 (m, 8H), 3.93 (d, *J* = 12.7 Hz, 1H), 3.59 (t, *J* = 8.4 Hz, 1H), 3.28–2.73 (m, 2H), 2.51–2.00 (m, 2H), 2.00–1.38 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ: 163.5, 161.0, 152.6, 133.9, 133.2 (d, *J* = 12.0 Hz), 131.0 (d, *J* = 32.0 Hz), 127.4, 126.9, 126.0, 125.4, 124.8, 122.3,

118.3, 117.4, 115.4, 115.2, 70.1, 57.5, 52.5, 32.7, 22.5. ¹⁹F NMR (376 MHz, chloroform-*d*) δ : - 115.13 (m, 1F). ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₁H₂₁FNO: 322.1602; found: 322.1618.

1-(4-Methylbenzyl)-2-(phenylethynyl)pyrrolidine (3ak). The general method was followed. Purification by chromatography (2% EtOAc/PE) provided pure product. Yield: 41.2 mg, 75%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.48 (m, 2H), 7.37–7.26 (m, 5H), 7.16 (d, *J* = 7.7 Hz, 2H), 4.04 (d, *J* = 12.8 Hz, 1H), 3.74–3.50 (m, 2H), 2.81 (m, 1H), 2.57 (m, 1H), 2.36 (s, 3H), 2.27–2.10 (m, 1H), 2.12–2.03 (m, 1H), 2.00–1.88 (m, 1H), 1.89–1.78 (m, 1H).

1-(4-Bromobenzyl)-2-(phenylethynyl)pyrrolidine (3al). The general method was followed. Purification by chromatography (2% EtOAc/PE) provided pure product. Yield: 48.3 mg, 71%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.44 (d, *J* = 3.1 Hz, 4H), 7.35–6.87 (m, 5H), 3.98 (d, *J* = 13.0 Hz, 1H), 3.67–3.29 (m, 2H), 2.76 (m, 1H), 2.53 (m, 1H), 2.25–1.68 (m, 4H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 138.0, 131.7, 131.7, 131.3, 131.3, 130.8, 130.8, 128.2, 128.0, 123.3, 120.8, 88.5, 85.1, 56.6, 54.4, 51.6, 31.7, 22.1. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₁₉H₁₉BrN: 340.0695; found: 340.0708.

1-(4-Fluorobenzyl)-2-(phenylethynyl)pyrrolidine (3am). The general method was followed. Purification by chromatography (2% EtOAc/PE) provided pure product. Yield: 42 mg, 75%. Yellow oil. The compound has been reported.^[3,4] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.37 (m, 2H), 7.32–7.19 (m, 5H), 6.92 (m, 2H), 3.92 (s, 1H), 3.61–3.36 (m, 2H), 2.68 (m, 1H), 2.46 (m, 1H), 2.08 (m, 1H), 1.94 (m, 1H), 1.85 (m, 1H), 1.79–1.72 (m, 1H).

1-(4-Methylbenzyl)-2-(nitromethyl)pyrrolidine (3an). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 36.7 mg, 78%. Yellow oil. ¹H NMR (500 MHz, chloroform-*d*) δ : 7.23–6.86 (m, 4H), 4.19 (m, 2H), 3.76 (d, *J* =

13.3 Hz, 1H), 3.43 (d, J = 13.0 Hz, 1H), 3.23 (m, 1H), 2.87 (m, 1H), 2.42–2.10 (m, 4H), 2.06–1.84 (m, 1H), 1.79–1.39 (m, 3H). ¹³C NMR (126 MHz, chloroform-*d*) δ : 135.8, 134.7, 128.0, 128.0, 127.7, 127.7, 78.3, 60.4, 58.0, 53.3, 28.3, 22.0, 20.1. ESI-HRMS: m/z [M+H]⁺ calcd. for C₁₃H₁₉N₂O₂: 235.1441; found: 235.1442.

1-(4-Bromobenzyl)-2-(nitromethyl)pyrrolidine (3ao). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 42.3 mg, 71%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.34 (d, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 4.53–3.96 (m, 2H), 3.77 (m, 1H), 3.37 (d, *J* = 13.3 Hz, 1H), 3.25 (m, 1H), 2.83 (m, 1H), 2.21 (m, 1H), 2.00 (m, 1H), 1.83–1.44 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 138.1, 131.5, 131.5, 130.3, 130.3, 120.9, 79.3, 61.6, 58.7, 54.2, 29.2, 23.1. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₁₂H₁₆BrN₂O₂: 299.0390; found: 299.0410.

1-(4-Fluorobenzyl)-2-(nitromethyl)pyrrolidine (3ap). The general method was followed. Purification by chromatography (2-3% EtOAc/PE) provided pure product. Yield: 33.3 mg, 70%. Yellow oil. ¹H NMR (400 MHz, chloroform-*d*) δ : 7.38–7.01 (m, 2H), 6.89 (t, J = 8.5 Hz, 2H), 4.23 (m, 2H), 3.78 (d, J = 13.0 Hz, 1H), 3.39 (d, J = 13.0 Hz, 1H), 3.25 (m, 1H), 2.82 (m, 1H), 2.22 (q, J = 8.5 Hz, 1H), 1.97 (m, 1H), 1.67 (m, 3H). ¹³C NMR (101 MHz, chloroform-*d*) δ : 163.2, 160.8, 134.8, 130.2 (d, J = 32.0 Hz), 130.2, 115.2 (d, J = 72.0 Hz), 115.0, 79.3, 61.5, 58.6, 54.2, 29.2, 23.1. ¹⁹F NMR (376 MHz, chloroform-*d*) δ : -115.64 (m, 1F). ESI-HRMS: m/z [M+H]⁺ calcd. for C₁₂H₁₆FN₂O₂: 239.1190; found: 239.1180.

2-Benzyl-1-(1*H***-indol-3-yl)-1,2,3,4-tetrahydroiso quinoline (3aq)**. The general method was followed. Purification by chromatography (30% EtOAc/PE) provided pure product. Yield: 55.4 mg, 82%. Yellow oil. ¹H NMR (500 MHz, chloroform-*d*) δ : 7.88 (s, 1H), 7.69–7.48 (m, 1H), 7.36–7.15 (m, 6H), 7.10 (m, 3H), 7.02 (d, *J* = 8.4 Hz, 1H), 6.92 (d, *J* = 16.8 Hz, 3H), 4.95 (s, 1H), 3.88 (m, 1H), 3.31 (d, *J* = 3.0 Hz, 1H), 3.18–2.91 (m, 2H), 2.83 (m, 1H), 2.53 (m, 1H). ¹³C NMR (126 MHz, chloroform-*d*) δ : 140.0, 138.7, 136.7, 134.8, 129.1, 129.1, 128.5, 128.5, 128.2, 128.2, 127.0, 126.8, 126.0, 125.7, 124.5, 122.1, 120.8, 119.5, 118.6, 111.1, 61.1, 59.0, 47.1, 28.8. ESI-HRMS: *m/z* [M+H]⁺ calcd. for C₂₄H₂₃N₂: 339.1856; found: 339.1854.

2-(Benzylsulfonyl)-1-(1*H***-indol-3-yl)-1,2,3,4-tetrahydro isoquinoline (4a)**. Yield: 68 mg, 70%. White solid. The compound has been reported.^[5] NMR spectra match literature data. ¹H NMR (400 MHz, chloroform-*d*) δ : 8.19 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.31 (m, 1H), 7.24 (s, 1H), 7.14–6.99 (m, 7H), 6.92 (m, 1H), 6.75 (d, *J* = 6.6 Hz, 3H), 6.38 (s, 1H), 3.91 (m, 1H), 3.80 (m, 1H), 3.41 (m, 1H), 3.09 (m, 1H), 2.98–2.81 (m, 1H), 2.62 (m, 1H).

5. References

- [1] Y. N. Belokon, V. I. Tararov, V. I. Maleev, T. F. Savel'eva, M. G. Ryzhov, *Tetrahedron:* Asymmetry, **1998**, *9*, 4249-4252.
- [2] a) D. Barbier, C. Marazano, C. Riche, B. C. Das, P. Potier, J. Org. Chem. 1998, 63, 1767-1772.
 b) S. K. Chakka, P. G. Andersson, G. E. M. Maguire, H. G. Kruger, T. Govender, Eur. J. Org. Chem. 2010, 972-980. c) X.-L. Qiu, J. Zhu, G. Wu, W.-H. Lee, A. R. Chamberlin, J. Org. Chem. 2009, 74, 2018-2027. d) H. Chong, Y.-W. Chen, Org. Lett. 2013, 15, 5912-5915. e) L. Benmekhbi, F. Louafi, T. Roisnel, J.-P. Hurvois, J. Org. Chem. 2016, 81, 6721-6739.
- [3] a) H.-P. Bi, L. Zhao, Y.-M. Liang, C.-J. Li, Angew. Chem., Int. Ed. 2009, 48, 792-795; Angew. Chem. 2009, 4, 806-809. b) H.-P. Bi, W.-W. Chen, Y.-M. Liang, C.-J. Li, Org. Lett. 2009, 11, 3246-3249.
- [4] C. Zhang, D. Seidel, J. Am. Chem. Soc. 2010, 132, 1798-1799.
- [5] a) X.-L. Qiu, J. Zhu, G. Wu, W.-H. Lee, A. R. Chamberlin, J. Org. Chem. 2009, 74, 2018-2027. b) T.-W. Chung, Y.-T. Hung, T. Thikekar, V. V. Paike, F. Y. Lo, P.-H. Tsai, M.-C Liang, C.-M. Sun, ACS Comb. Sci. 2015, 17, 442-451. c) J. Zhu, H. Chen, X. E. Guo, X.-L. Qiu, C.-M. Hu, A. R. Chamberlin, W.-H. Lee. Eur. J. Med. Chem. 2015, 96, 196-208.

6. Copies of ¹H, and ¹³C NMR Spectra of New Products

