Supplementary Information

Waste snail shell derived heterogeneous catalyst for biodiesel production by transesterification of soybean oil

Ikbal Bahar Laskar^{*a*}, Kalyani Rajkumari^{*b*}, Rajat Gupta^{*a*}, Sushovan Chatterjee^{*a*}, Bappi Paul^{*b*}, Samuel Lalthazuala Rokhum^{*b**}

^aDepartment of Mechanical Engineering, National Institute of Technology Silchar, Assam-788010, India

^bDepartment of Chemistry, National Institute of Technology Silchar, Assam-788010, India.

Corresponding authors. Tel.: +91 3842 242915; fax: +91 3842-224797;

Email address: rokhum@che.nits.ac.in (L. Rokhum)

Table of Contents

DSC analysis of snail shells	S2	
EDS spectra of snail shells at different calcination temperature from 600-900 °C		
EDS mapping of snail shells at different calcination temperature from 600-900 $^{\circ}$ C	S3-S4	
N2 adsorption- desorption of snail shells, snail shells calcined at 700 $^{\circ}$ C and 800 $^{\circ}$ C		
Mass spectrums of fatty acid methyl esters	S7-S15	
Physico-chemical properties and fatty acids of soyabean oil (Table 1)		
GCMS condition for fatty acid methyl ester (Table2)		

Fig. 1: DSC analysis of snail shells

Fig. 2: EDS spectra (a) calcination at 600 °C (b) calcination at 700 °C (c) calcination at 800 °C (d) calcination at 900 °C.

Fig. 3: EDS mapping of snail shell calcined at 600 °C (a) electron image (b) Ca (c) C (d) O

Fig. 4: EDS mapping of snail shell calcined at 700 °C (a) electron image (b) Ca (c) C (d) O

Fig. 5: EDS mapping of snail shell calcined at 800 °C (a) electron image (b) Ca (c) C (d) O

Fig. 6: EDS mapping of snail shell calcined at 900 °C (a) electron image (b) Ca (c) C (d) O (e) Si (f) Mg (g) Al

Fig. 7: N₂ adsorption-desorption analysis of snail shells (uncalcined)

Fig. 8: N_2 adsorption-desorption analysis of snail shells calcined at 700 °C

Fig. 9: N_2 adsorption-desorption analysis of snail shells calcined at 800 °C

Fig. 10: Mass spectrum of methyl tetradecanoate (C14:0)

Fig. 11: Mass spectrum of methyl-hexadecanoate(C16:0)

Fig. 12: Mass spectrum of methyl-octadeca-14,17-dieonate (C18:2)

Fig. 13: Mass spectrum of methyl-octadeca-9,12-dieonate (C18:2)

Fig. 14: Mass spectrum of methyl -11-eicosenoate (C20:1)

Fig. 15: Mass spectrum of methyl nonadecanoate (C20:0)

Fig. 16: Mass spectrum of methyl docosanoate (C22:0)

Fig. 17: Mass spectrum of methyl tricosonate (C24:0)

Fig. 18: Mass spectrum of methyl tetracosanoate (C24:0)

Physical properties	Soyabean oil	ASTM standards
Density (gm/cm ³)	0.91	ASTM D 1448-1972
Kinematic Viscosity(cst at 30 °C)	32	ASTM D445
Flash point (°C)	315	ASTM D 7215
Acid value (mgKOH/g)	0.54	ASTM D446
Free fatty acid (%)	0.01	
Saturated fatty acid (%)	15	
Monounsaturated fatty acid (%)	22	
Poluonsaturatted fatty acid (%)	60	
Trans Fatty acid (%)	2	

Table 1: Physico-chemical properties and fatty acids of soyabean oil

 Table 2: GCMS conditions for fatty acid methyl esters

Instrument GC-MS condition		onditions			
GC					
Injection mode		Splitless			
Injector temperature		250 °C			
Split ratio		10			
Constant column flow mode		1 mL/min			
Carrier gas		Helium			
Column oven temperature progress					
			Total		
Temperature (°C)	Rate (°C/min)	Hold (min)	(min)		
80	-	1	1		
200	30	1	5		
275	5	0.5	20.5		
280	1	0.5	26		
Column: HP-5 ms					
Length		50 m			
Diameter		0.25 mm			
Film thickness		0.25 μm			
MS					
Ionization mode EI auto		EI auto			
Start m/z 50 m/z 50					
End m/z 350		m/z 350			