First-principles study of thermoelectric properties of Mg₂Si- ## Mg₂Pb semiconductor materials Tao Fan,*ab Congwei Xie,ac Shiyao Wang,a Artem R. Oganov*acd and Laifei Chengb ^a-International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China. E-mail: nwpufant@mail.nwpu.edu.cn ^{b.} Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China. ^{c.}Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Moscow 143026, Russia. E-mail: A.Oganov@skoltech.ru ^{d.}Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny City, Moscow Region 141700, Russia Fig. S1 Enlarged drawings of band structure near band gap. (a) Mg_2Si ; (b) $Mg_{64}Si_{31}Pb$; (c) $Mg_{64}Si_{30}Pb_2$; (d) Mg_8Si_3Pb . In each figure, the Fermi level E_F was shifted to zero. Fig. S2 Band structures along X-G path. (a) Mg_2Si ; (b) $Mg_64Si_{31}Pb$; (c) $Mg_64Si_{30}Pb_2$; (d) Mg_8Si_3Pb . In each figure, the Fermi level E_F was shifted to zero.