Supplementary Material

Silicalite-1 zeolite acidification by Zn modification and its catalytic properties for iso-butane conversion

Guodong Liu, a Jiaxu Liu, Ning He, a Cuilan Miao, a Jilei Wang, a Qin Xin b and

Hongchen Guo*a

^a Department of Catalytic Chemistry and Engineering & State Key Laboratory of Fine Chemicals,

Dalian University of Technology, Dalian 116012, P. R. China

^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of

Sciences, Dalian 116023, P. R. China

* Corresponding author, E-mail: hongchenguo@dlut.edu.cn

Elements	Compounds	Composition
		/wt.%
Si	SiO ₂	99.92
Na	Na ₂ O	0.034
Ti	TiO ₂	0.010
Fe	Fe ₂ O ₃	0.010
Zn	ZnO	0.001
Cl	Cl	0.015

 Table S1. XRF analysis of parent S-1 zeolite.

Figure S1. FE-SEM images of Zn_x/S-1 catalysts with different Zn loading: parent S-1 zeolite (a);

Figure S2. HRTEM images of $Zn_{6.0}/S-1$ (A) and $Zn_{12.0}/S-1(B)$.

Catalysts	Crystallinity (%)
S-1	100
$Zn_{1.0}/S-1$	85.1
Zn _{3.0} /S-1	80.3
Zn _{6.0} /S-1	75.2
$Zn_{8.0}/S-1$	61.8
Zn _{12.0} /S-1	53.5

Table S2. The relative crystallinity of $Zn_x/S-1$ catalysts

Table S3. The acid amounts of catalysts as determined by NH₃-TPD

Catalysts	Acid amount (mmol/g)
S-1	0.00367
$Zn_{1.0}/S-1$	0.0736
Zn _{3.0} /S-1	0.134
Zn _{6.0} /S-1	0.142
Zn _{8.0} /S-1	0.151
$Zn_{12.0}/S-1$	0.137
$Zn_{6.0}/ZSM-5$	0.555
HZSM-5	0.676

Figure S3. N_2 adsorption-desorption isotherm of $Zn_x/S-1$ (x from 0.0 to 12.0).

Figure S4. XRD pattern of H-type ZSM-5 zeolite.

Figure S5. SEM images of H-type ZSM-5 zeolite under the scale bar of 100 nm.