Supporting Information

Enhancement of Dissipated Energy by Large Bending of an Organic Single Crystal undergoing Twinning Deformation

Sajjad Husain Mir ${ }^{\text {a }}$, Yuichi Takasakia, ${ }^{\text {ab }}$, Emile R. Engel ${ }^{\text {a }}$, Satoshi Takamizawa ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
${ }^{\text {b }}$ Kanagawa Institute of Industrial Science and Technology, Shimoimaizumi, 705-1 Ebina, Kanagawa, 243-0435, Japan
*E-mail: staka@yokohama-cu.ac.jp

Table of contents

(a) Experimental information S2
(b) Crystallographic data S3
(c) Crystal face indexing S4
(d) Detail information for observation of stress-strain test S4
(e) Enlarged color figures described in the main text S5-S6

Other supplementary material

Video file for bending action of $\mathbf{1}$ observed under a polarizing microscope:
(a) Stress-Strain test at 298 K :
Takamizawa_movS1.qt

Materials

2-methyl-5-nitrobenzoic acid was purchased from Tokyo Chemical Industry, Japan. Solvents were purchased from Wako and used as received.

Recrystallization

Crystals of $\mathbf{1}$ were grown in acetone solution by slow evaporation. A mixture of small and long needleshaped crystals was obtained.

(a) Experimental information

i) Stress-strain test

Stress tests were carried out on a universal testing machine (Tensilon RTG-1210, A\&D Co. Ltd.).
ii) Single-crystal X-ray diffraction experiment

Single-crystal X-ray analysis of $\mathbf{1}$ was performed at 298 K on a Bruker SMART APEX CCD area detector (graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA)$) with a nitrogen flow temperature controller. Empirical absorption corrections were applied using the SADABS program. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least squares calculations on F^{2} (SHELXL-97) using the SHELX-TL program package. Non-hydrogen atoms were refined anisotropically; hydrogen atoms were refined in a riding model. The crystal face indexing was carried out using SMART in a SHELXTL Ver.6.12 program package with a twin resolution program. Crystallographic data of the structure is summarized in Tab. S1.

(b) Crystallographic data

Figure S1. Molecular structures of $\mathbf{1}$ in (a) mother domain and (b) twinned domain as ORTEP representations drawn at 50% probability level for the ellipsoid obtained from single crystal Xray diffraction measurement at 298 K .

Table S1. Crystallographic data of $\mathbf{1}$ in bent shape.

Domain	mother $\left(\alpha_{0}\right)$	daughter $\left(\alpha_{1}\right)$
T / K	298	298
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$	$\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{4}$
M	181.15	181.15
Crystal system	Triclinic	Triclinic
Space group	$P-1$	$P-1$
a / \AA	$7.611(15)$	$7.636(13)$
b / \AA	$10.47(2)$	$10.426(19)$
c / \AA	$10.55(2)$	$10.520(18)$
$\alpha /{ }^{\circ}$	$89.45(3)$	$89.28(3)$
$\beta /^{\circ}$	$81.45(3)$	$81.80(3)$
$\gamma /{ }^{\circ}$	$76.75(3)$	$76.32(3)$
V / \AA^{3}	$810(3)$	$805(2)$
Z	4	4
$D_{\text {calc }} / \mathrm{Mg} \mathrm{m}^{-3}$	1.485	1.495
$\mu(\mathrm{Mo} \mathrm{K} \alpha) \mathrm{mm}^{-1}$	0.121	0.122
Reflections collected	2759	2769
Independent reflections $\left(R_{\text {int }}\right)$	1674	1554
Goodness of fit	1.071	1.161
$R_{1}(I>2 \sigma($ all data $))$	0.0601	0.1016
${ }_{\mathrm{w}} R_{2}(I>2 \sigma$ (all data) $)$	0.1786	0.3546
Leastdiff.peak (hole) $/ \mathrm{e} \AA^{3}$	$0.233(-0.243)$	$0.466(-0.431)$

(c) Crystal phase indexing

The crystal face indexing showed deformation twinning of $\mathbf{1}$. Shear stress formed daughter domain α_{1} from α_{0} in rotational twinning. The twinning interfaces are $(-21-1)_{\alpha 0} / /(-21-1)_{\alpha 1}$ (or (-$\left.21-1_{a 0} /(-21-1)_{\alpha 1}\right)$.

Figure S2. a) Crystal face indices of α_{0} domain (a) and α_{1} domain (b).
(d) Detail information for observation of stress-strain test

Table S2: Conditions of cyclic shear test on crystal 1, shown in Fig. 3b

Temperature $/{ }^{\circ} \mathrm{C}$	Loading surface	Crystal dimension		Displacement
	width $/ \mu \mathrm{m}$	Thickness $/ \mu \mathrm{m}$		
25	$-1-10$	32.48	286.96	30

(e) Enlarged color figures described in the main text
(a)

Figure S3. a) Optical image of the twinned crystal by compression on crystal surface (110) α_{0}, [013] and b) crystal face indices of the mechanically twinned crystal.

Figure S4. Measurement of stress-strain curve, a) Cartoon illustration of crystal deformation pattern and force components, b) snapshots of the twinning deformation of shear-stress (i-iii) (Movie S1) with inset sketches of the deformation pattern, and c) stressstrain curve at 298 K

Effective stress: $\sigma_{\text {eff }}$
$F_{\text {eff }}=F_{\text {obs }} \cos \phi \quad\left(\phi=57.28^{\circ}\right)$
$\sigma_{\text {eff }}=F_{\text {eff }} /$ cross-sectional area

Figure S5. Partial packing diagrams of overlapping mother $\left(\alpha_{0}\right)$ and daughter domain $\left(\alpha_{1}\right)$ of $\mathbf{1}$ viewed (a) along $[013]_{\alpha 0}$ and (b) along $\left[0^{3} 1\right]_{\alpha 0}$. Molecules form 2D molecular chains by hydrogen bonding (indicated as dotted lines).

