Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Enhancement of Dissipated Energy by Large Bending of an Organic Single Crystal undergoing Twinning Deformation

Sajjad Husain Mir^a, Yuichi Takasaki^{a,b}, Emile R. Engel^a, Satoshi Takamizawa^a*

^aDepartment of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
^bKanagawa Institute of Industrial Science and Technology, Shimoimaizumi, 705-1 Ebina, Kanagawa, 243-0435, Japan

*E-mail: staka@yokohama-cu.ac.jp

Table of contents

(a)	Experimental information	S2
(b)	Crystallographic data	S3
(c)	Crystal face indexing	S4
(d)	Detail information for observation of stress-strain test	S4
(e)	Enlarged color figures described in the main text	S5-S6

Other supplementary material

Video file for bending action of **1** observed under a polarizing microscope:

(a) Stress-Strain test at 298 K: Takamizawa movS1.qt

Materials

2-methyl-5-nitrobenzoic acid was purchased from Tokyo Chemical Industry, Japan. Solvents were purchased from Wako and used as received.

Recrystallization

Crystals of **1** were grown in acetone solution by slow evaporation. A mixture of small and long needleshaped crystals was obtained.

(a) Experimental information

i) Stress-strain test

Stress tests were carried out on a universal testing machine (Tensilon RTG-1210, A&D Co. Ltd.).

ii) Single-crystal X-ray diffraction experiment

Single-crystal X-ray analysis of **1** was performed at 298 K on a Bruker SMART APEX CCD area detector (graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å)) with a nitrogen flow temperature controller. Empirical absorption corrections were applied using the SADABS program. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least squares calculations on F^2 (SHELXL-97) using the SHELX-TL program package. Non-hydrogen atoms were refined anisotropically; hydrogen atoms were refined in a riding model. The crystal face indexing was carried out using SMART in a SHELXTL Ver.6.12 program package with a twin resolution program. Crystallographic data of the structure is summarized in Tab. S1.

(b) Crystallographic data

Figure S1. Molecular structures of **1** in (a) mother domain and (b) twinned domain as ORTEP representations drawn at 50% probability level for the ellipsoid obtained from single crystal X-ray diffraction measurement at 298 K.

Domain	mother (α_0)	daughter (α_1)
T/K	298	298
Empirical formula	C ₈ H ₇ NO ₄	C ₈ H ₇ NO ₄
М	181.15	181.15
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a /Å	7.611 (15)	7.636 (13)
b /Å	10.47 (2)	10.426 (19)
c /Å	10.55 (2)	10.520 (18)
α/°	89.45 (3)	89.28 (3)
β /°	81.45 (3)	81.80 (3)
γ /°	76.75 (3)	76.32 (3)
$V/Å^3$	810 (3)	805 (2)
Ζ	4	4
$D_{\text{calc}}/\text{Mg m}^{-3}$	1.485	1.495
μ (Mo K α) mm ⁻¹	0.121	0.122
Reflections collected	2759	2769
Independent reflections (R_{int})	1674	1554
Goodness of fit	1.071	1.161
$R_1(I > 2\sigma \text{ (all data)})$	0.0601	0.1016
$_{\rm w}R_2(I > 2\sigma \text{ (all data)})$	0.1786	0.3546
Leastdiff.peak (hole) /eÅ ³	0.233(-0.243)	0.466(-0.431)

 Table S1. Crystallographic data of 1 in bent shape.

(c) Crystal phase indexing

The crystal face indexing showed deformation twinning of **1**. Shear stress formed daughter domain α_1 from α_0 in rotational twinning. The twinning interfaces are $(-21-1)_{\alpha 0}//(-21-1)_{\alpha 1}$ (or $(-21-1)_{\alpha 0}//(-21-1)_{\alpha 1})$.

Figure S2. a) Crystal face indices of α_0 domain (a) and α_1 domain (b).

(d) Detail information for observation of stress-strain test

Temperature / °C	Loading	Crystal dimension		Displacement
	surface	width / µm	Thickness / µm	Velocity / µm min ⁻¹
25	-1-10	32.48	286.96	30

Table S2: Condi	tions of cyclic shea	r test on crystal 1.	shown in Fig. 3b
I HOLE SET COLL		- ••••••••••••••••••••••••••••••••••••	, one win in 1 ig. e e

(e) Enlarged color figures described in the main text

Figure S3. a) Optical image of the twinned crystal by compression on crystal surface (110) α_0 , [013] and b) crystal face indices of the mechanically twinned crystal.

Figure S4. Measurement of stress-strain curve, a) Cartoon illustration of crystal deformation pattern and force components, b) snapshots of the twinning deformation of shear-stress (i-iii) (Movie S1) with inset sketches of the deformation pattern, and c) stress-strain curve at 298 K

Effective stress: σ_{eff} $F_{eff} = F_{obs} \cos \phi$ ($\phi = 57.28^{\circ}$) $\sigma_{eff} = F_{eff} / \text{ cross-sectional area}$

Figure S5. Partial packing diagrams of overlapping mother (α_0) and daughter domain (α_1) of **1** viewed (a) along $[013]_{\alpha 0}$ and (b) along $[0^31]_{\alpha 0}$. Molecules form 2D molecular chains by hydrogen bonding (indicated as dotted lines).