Electronic supplementary information (ESI)

Heteroatom Tri-doped Porous Carbon Derived from Waste Biomass as Pt-free Counter Electrode in Dyesensitized Solar Cell

Pin Ma^{b,e,‡}, Wenli Lu^{a,‡}, Xiaoying Yan^{c,‡}, Weidan Li^a, Yanyan Fang^b, Xiong Yin^{a,*}, Zhengang Liu^{d,*}, Yuan Lin^{b,*}

^a State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing
University of Chemical Technology, Beijing 100029, P. R. China

^b Beijing National laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

 ^c CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
^d Laboratory of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
^e University of Chinese Academy of Sciences, Beijing 100049, P. R. China

[‡] These authors contributed equally to this work.

Figure S1. SEM image (a) and elemental mapping image (b) of O element for asobtained porous carbon sample.

Figure S2. (a) The XPS survey spectra of as-obtained porous carbon sample with high resolution XPS spectra of (b) P 2p and (c) S2p element.

As shown in Figure S2b, there are four characteristic peaks in the P 2p spectra, located at 130.8, 133.2, 133.9and 136.0 eV. And these peaks are ascribed to formation of P-O, P-C, and C-O-PO_x. Figure S2c exhibits the S 2p spectra, associated with three peaks at 163.7 eV (C-S-C), 164.8 eV (C=S) and 168.4 eV (C-SO_x-C), respectively. It verified that the P and S elements were successfully doped into the porous carbon.

Figure S3.The changes in cathodic and anodic peak current densities of redox couple (I_3^-/I^-) on the TPC and Pt electrode in CV measurement during the 100 scanning cycles.

Scheme S1. The equivalent circuit for fitting experimental data in Figure 5b. R_s : Series resistance; R_{ct} : charge transfer resistance; CPE: double-layer capacitance; N_p : Nernst diffusion impedance within the electrode pores; N_b : bulk Nernst diffusion impedance in the electrolyte.

Scheme S2. The equivalent circuit for fitting data in Figure 6b. R_{ct1} : the charge-transfer resistance at the interface of the counter electrode and the liquid electrolyte; R_{ct2} : charge transfer resistance at the TiO₂/dye/electrolyte interfaces; Z_N : Nernst diffusion resistance of the redox couple within the electrolyte; CPE1 and CPE2: double-layer capacitances.