SUPPORTING INFORMATION

Characterization of palladium species in the after γ -irradiation of a TBP-alkane-Pd(NO₃)₂ system

Bénédicte SIMON^a, Christine BOUYER^{*a}, Stéphanie DE SIO^b, Claude BERTHON^a, Nathalie BOUBALS^a, Frédéric MISERQUE^c, Emmanuelle BRACKX^a, Nicole RAYMOND^a, Alexandre CHAGNES^d, Laurence BERTHON^a

^{a.} CEA Marcoule, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes (DMRC), BP17171, 30207 Bagnols-sur-Cèze Cedex, France.

b. ORANO Cycle, 1 Place Jean Millier, 92084 Paris La Défense.

^{c.} DEN, Service de Corrosion et d'étude du Comportement des Matériaux dans leur Environnement (SCCME), CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.

^{d.} Université de Lorraine, CNRS, GeoRessources, F- 54000 Nancy, France.

^{*}corresponding author: christine.bouyer@cea.fr

Figure S1: XPS core level spectra C-1s for (a) $\Phi_{\text{S},1}$ and (b) $\Phi_{\text{S},2}$.

Figure S2: XPS core level spectra $Pd3d_{5/2}$ for $\Phi_{S,3}$ obtained after a partial dissolution of $\Phi_{S,1}$ in 1 mol.L⁻¹NH₃ (solid/liquid ratio= 9; dissolution time=15 minutes).

XPS spectra shows Pd-CN contribution disappears after $\Phi_{S,1}$ dissolution in 1 mol.L⁻¹ NH₃ at a solid:liquid ratio of 9 during 15 minutes. In this case, two peaks are observed for $\Phi_{S,3}$ (Figure S2) with a lower binding energy value for the main contribution of Pd (338.4 instead of 338.7 eV). Furthermore, the area of the peak attributed to Pd linked to -C=N at 339.3 eV is relatively small and close to the detection limit.

³¹P NMR spectra decoupled of ¹H spectrum was done on $\Phi_{S,2}$. This experiment allows determining the number of different phosphorous compounds present in the precipitate. For $\Phi_{S,2}$, the value is 2 (Figure S1 (b)). The ³¹P spectra coupled with ¹H (Figure S3 (a)) gives information on the number of –CH₂ two bonds far from the phosphorous atoms. The peak observed at -0.8 ppm is a septuplet and -1.2 ppm is a quintuplet (Figure S3 (a)). Based on the literature⁷⁰, these two peaks are assigned respectively to TBP and HDBP molecules. This is consistent with the ¹H integration rates showing the TBP is the main compound while the HDBP (the degradation product) is growing. The 2D ³¹P – ¹H spectrum based on the CIGARAD pulse sequence (for ³¹P 2 to 4 bounds far from ¹Hnuclei) allows attributing the ¹H observed to the butyl chain of TBP or HDBP (Figure S2).

Figure S3: 1D NMR spectrum (a) ³¹P coupled with ¹H and (b) of ³¹P decoupled of ¹H for $\Phi_{S,2}$ partially dissolved in DMSO-D6 with m($\Phi_{S,2}$) = 9.8 mg in 650µL of DMSO-D6) (S/L = 15.07 g of precipitate /L of solvent).

Figure S4: 2D ³¹P – ¹H NMR spectrum of $\Phi_{s,2}$ partially dissolved in DMSO-D6 (m_{Φ s,2} = 9.8 mg of $\Phi_{s,2}$ in 650 μ L of DMSO-D6 at S/L = 15.07 g of precipitate /L of solvent).

Figure S5: ¹⁵N NMR spectrum of an aqueous phase of 3 mol.L⁻¹ HNO₃ containing palladium(II) nitrate (5 g.L⁻¹ of Pd) and Na¹⁵NO₃ (66 g/L) (98 % atomic of ¹⁵N) in contact with $30\%_{vol.}$ TBP diluted in TPH after γ -irradiation at 500 kGy (dose rate= 5 kGy/h).

Figure S6: ¹H NMR spectrum of an aqueous phase of 3 mol.L⁻¹ H¹⁴NO₃ in the presence of palladium(II) nitrate (Pd 5 g.L⁻¹) and Na¹⁵NO₃ (66 g/L) (98 % atomic of ¹⁵N) in contact with 30%_{vol.} TBP diluted in TPH after $\gamma\text{-}irradiation$ at 500 kGy .

A mixture of ¹⁴N and ¹⁵N is present in the aqueous nitric acid (H¹⁴NO₃) solution containing palladium(II) nitrate and sodium nitrite (Na¹⁵NO₃). A triplet attributed to ¹⁴N is observed around 6 ppm and a doublet attributed to ¹⁵N is observed in the same region. The presence of proton in the region can be charateristic of amine (-NH₂).

Figure S7: gHSQCAD ¹⁵N-¹H spectra of the an aqueous phase containing H¹⁴NO₃ enriched with ¹⁵N (Na¹⁵NO₃ – 66 g/L) in the presence of palladium(II) nitrate (5 g.L⁻¹ of Pd) in DMSO-D6. ¹⁵N reference scale is CH₃NO₂ and ¹H reference scale is TMS.

A mixture of ¹⁴N and ¹⁵N is present in the aqueous nictric acid ($H^{14}NO_3$) solution containing palladium(II) nitrate and sodium nitrate ($Na^{15}NO_3$). Consequently, the triplet is assigned to ¹⁴N-¹H coupling around 6 ppm while the doublet is assigned to ¹⁵N-¹H coupling. The observed ¹⁵N chemical shift at about 360 ppm is consistent with an amine (-NH₂) group (Figure S7).