Supporting Information

Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO₂ capture

Yao Li,^{ac} Ran Xu,^a Xin Wang,^b Binbin Wang,^{*b} Jianliang Cao,^d Juan Yang^{*ac} and Jianping Wei^{*ac}

^a School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.

^b School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.

^c State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo

454000, China.

^d School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.

* Corresponding authors.

[•]E-mail address: wangbb580@aliyun.com (B. Wang), yangjuanhpu@163.com (J. Yang), hpuwjp@163.com (J. Wei).

Fig. S1 The CO₂ adsorption isotherm of the WNPC-3 measured under high pressure at 0 °C.

Fig. S2 The initial slopes are calculated from CO_2 and N_2 adsorption isotherms at 25 °C for WPC-3. The CO_2/N_2 selectivity ratio is 23.

The ideal adsorption solution theory (IAST) calculation

The pure adsorption isotherms of CO_2 and N_2 on the WNPC-3 at 25 °C and 1 bar are given in Fig. 6c.

The CO₂ and N₂ experimental adsorption isotherms were fitted to the dual-site Langmuir model (DL) and single site Lagmuir model (L), respectively, as following:^{S1-S3} Dual site Langmuir model = $q_A + q_B$; Single site Lagmuir model = q_A

$$q = q_A + q_B = \frac{q_{sat,A} b_A p}{1 + b_A p} + \frac{q_{sat,B} b_B p}{1 + b_B p}$$

Where A and B are two distinct adsorption sites, q is the amount of gas adsorbed (mmol/g), p is the pressure (bar), $q_{sat,i}$ is the saturation capacity (mmol/g), b_i is the dual-site Langmuir parameter (bar ⁻¹).

Fig. S3 CO_2 and N_2 gas adsorption isotherms for WPC-3 (black dot). The red lines correspond to DL and L equation fits.

The ideal adsorption solution theory (IAST) of developed by Myers and Prausnitz has been reported to predict binary gas mixture adsorption on porous materials.^{S4-S6} Adsorption selectivity (S_{ads}) for binary mixtures is defined as following:

$$S_{ads} = [q_1/q_2] / [p_1/p_2]$$

Where S_{ads} is the selectivity factor, q_i is the amount adsorbed at partial pressure p_i of the gas i in the binary mixture. Generally, to estimate the CO_2/N_2 selectivity, partial pressures of CO_2 and N_2 are taken as 0.15 and 0.85, respectively, which is a typical composition of flue gas.

The isosteric heat of adsorption (Qst) calculation

Isosteric heat of adsorption (Qst) is the standard enthalpy of adsorption at a fixed surface coverage. The Qst of CO_2 adsorption on the WNPC-3 was calculated at two different temperatures (0 °C and 25 °C) considering the same adsorbed amount obtained at two different pressures using a modified version of the Clausius-Clapeyron equation:^{S6-S8}

$$\ln (P_1/P_2) = \Delta H_{ads} \left(\frac{T_2 - T_1}{R \cdot T_1 \cdot T_2} \right)$$

Where P_1 and P_2 are the pressures, for the same of CO_2 adsorbed amount, at different temperatures of T_1 and T_2 , respectively. ΔH_{ads} gives the isosteric heat of adsorption.

	CO_2 uptake (mmol·g ⁻¹)		CO_2/N_2 selectivity (25 °C)		
Sample	0 °C	25 °C	Initial slope ^a	IAST ^b	Reference
aC-AO1	4.237	2.489	22.4		[S7]
NPCs-2-500	4.0	2.5		21.5	[S9]
H-NMC-2.5		2.8	37		[S10]
STC-2.5	2.3	1.3	17		[S11]
4 AN	3.37	2.4	14		[S12]
N-TC-EMC		4.0	14		[\$13]
NC-800	2.65	1.95			[S14]
700°		3.51		79	[815]
SU-MAC-600		4.18	32		[S16]
500-2	4.8	3.5		41.6	[S17]
AC-PAIN-F		2.69		18.97	[S18]
WNPC-3	3.72	2.78	23	16	This work

Table S1 The comparison of CO_2 uptake and CO_2/N_2 selectivity for **WNPC-3 in this work** with several other reported porous carbons.

^a Selectivity was calculated from initial slope calculations at 25 °C;

 c Selectivity was calculated from IAST for 15/85 gas mixtures for CO_2/N_2 at 25 °C.

References

- S1 X. Ma, Y. Li, M. Cao and C. Hu, J. Mater. Chem. A, 2014, 2, 4819-4826.
- S2 J. Kou and L. B. Sun, Ind. Eng. Chem. Res., 2016, 55, 10916-10925.
- S3 T. Islamoglu, S. Behera, Z. Kahveci, T. D. Tessema, P. Jena and H. M. El-Kaderi, ACS Appl. Mater. Interfaces, 2016, 8, 14648-14655.

- S4 R. Li, X. Ren, X. Feng, X. Li, C. Hu and B. Wang, Chem. Commun., 2014, 50, 6894-6897.
- S5 Y. Shi, J. Zhu, X. Liu, G. Geng and L. Sun, Acs Appl. Mater. Interfaces, 2014, 6, 20340-20349.
- S6 S. Bandyopadhyay, A.G. Anil, A. James and A. Patra, Acs Appl. Mater. Interfaces, 2016, 8, 27669-27678.
- S7 S. M. Mahurin, J. Gorka, K. M. Nelson, R. T. Mayes and S. Dai, Carbon, 2014, 67, 457-464.
- S8 M. Dinca and J. Long, J. Am. Chem. Soc., 2005, 127, 9376-9377.
- S9 H. Wei, W. Qian, N. Fu, H. Chen, J. Liu, X. Jiang, G. Lan, H. Lin and S. Han, J. Mater. Sci., 2017, 52, 10308-10320.
- S10 J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia and D. Zhao, Adv. Funct. Mater., 2013, 23, 2322-2328.
- S11 D. L. Sivadas, R. Narasimman, R. Rajeev, K. Prabhakaran and K. N. Ninan, J. Mater. Chem. A, 2015, 3, 16213-16221.
- S12 R. Narasimman, S. Vijayan and K. Prabhakaran, Rsc. Adv., 2014, 4, 578-582.
- S13 L. Wang and R. T. Yang, J. Phys. Chem. C, 2012, 116, 1099-1106.
- S14 J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, *Acs Appl. Mater. Interfaces*, 2013, **5**, 3160-3167.
- S15 S. Gadipelli and Z. X. Guo, ChemSusChem, 2015, 8, 2123-2132.
- S16 J. W. F. To, J. He, J. Mei, R. Haghpanah, Z. Chen, T. Kurosawa, S. Chen, W. G. Bae, L. Pan, J. B. H. Tok, J. Wilcox and Z. Bao, *J. Am. Chem. Soc.*, 2016, **138**, 1001-1009.
- S17 D. Lee, C. Z. Zhang, C. Wei, B. L. Ashfeld and H. Gao, J. Mater. Chem., 2013, 1, 14862-14867.
- S18 S. Khalili, B. Khoshandam and M. Jahanshahi, RSC Adv., 2016, 6, 35692-35704.