A new efficient domino approach for the synthesis of pyrazolyl-phthalazine-diones. Antiradical activity of novel phenolic products

Dušica Simijonović, *a Zorica D. Petrović, a Vesna M. Milovanović, a Vladimir P. Petrović, and Goran A. Bogdanović b ¹University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia

² Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia *Corresponding author:*

*D. Simijonović: tel.: +381-34-336-223; +381-34-335-039; e-mail: dusicachem@kg.ac.rs

Contents

Figure S1. Experimental and simulated UV-Vis spectra of all PPDs except PPD-42
Figure S2. Kohn–Sham orbitals of PPD-1
Figure S3. Kohn–Sham orbitals of PPD-24
Figure S4. Kohn–Sham orbitals of PPD-35
Figure S5. Kohn–Sham orbitals of PPD-46
Figure S6. Kohn–Sham orbitals of PPD-57
Figure S7. Kohn–Sham orbitals of PPD-68
Figure S8. Kohn–Sham orbitals of PPD-79
Figure S9. Kohn–Sham orbitals of PPD-810
Figure S10. Kohn–Sham orbitals of PPD-911
Figure S11. Kohn–Sham orbitals of PPD-10
Table S1. Electron transitions responsible for the appearance of bands in UV-Vis spectra
Table S2. Energies (a.u.) of orbitals of investigated PPDs. 14
Table S3. Interaction of the examined and reference compounds with the stable radical DPPH. 15
Table S4. Calculated thermodynamical parameters (kJ mol ⁻¹) of antioxidant mechanisms for PPDs-7-9 and reaction
enthalpies (kJ mol ⁻¹) for the reactions of these compounds with the selected radicals in water
Table S5. Calculated thermodynamical parameters (kJ mol ⁻¹) of antioxidant mechanisms for PPDs-7-9 and reaction
enthalpies (kJ mol ⁻¹) for the reactions of these compounds with the selected radicals in benzene
Table S6. Crystallographic data and structure refinement for PPD-4
Spectral characterization of compounds PPD-1-3 and PPD-5
¹ H and ¹³ C NMR spectra of PPD-1-10 20
Reference

Figure S1. Experimental and simulated UV-Vis spectra of all PPDs except PPD-4.

Figure S2. Kohn–Sham orbitals of PPD-1.

Figure S3. Kohn–Sham orbitals of PPD-2.

HOMO-6

Figure S5. Kohn–Sham orbitals of PPD-4.

Figure S6. Kohn–Sham orbitals of PPD-5.

HOMO-6

Figure S7. Kohn–Sham orbitals of PPD-6.

Figure S8. Kohn–Sham orbitals of PPD-7.

Figure S9. Kohn–Sham orbitals of PPD-8.

Figure S10. Kohn–Sham orbitals of PPD-9.

Figure S11. Kohn–Sham orbitals of PPD-10.

PPD-1		PPD-2			PPD-3				PPD-4		PPD-5			
λ(nm)	transition		λ(nm)	trans	sition	λ(nm)	transition		λ(nm) transition		λ(nm)	transition		
370.9	номо	LUMO	371.5	номо	LUMO	369.7	номо	LUMO	370.0	номо	LUMO	367.4	номо	LUMO+1
288.2	номо	LUMO+2	259.7	HOMO-6	LUMO	310.7	номо	LUMO+1	310.2	номо	LUMO+1	309.1	HOMO-2	LUMO
257.7	HOMO-4	LUMO		HOMO-5	LUMO	259.6	HOMO-6	LUMO	258.8	HOMO-5	LUMO		НОМО	LUMO+2
225.5	HOMO-7	LUMO+1	225.5	HOMO-7	LUMO+1		HOMO-5	LUMO		HOMO-1	LUMO+1	306.0	НОМО	LUMO+2
224.5	HOMO-5	LUMO+1		HOMO-5	LUMO+1	226.1	HOMO-5	LUMO+1	243.9	HOMO-8	LUMO	260.1	HOMO-6	LUMO+1
			224.6	HOMO-5	LUMO+1	221.5	HOMO-3	LUMO+1		HOMO-6	LUMO	240.8	HOMO-8	LUMO+1
			219.2	HOMO-1	LUMO+3					HOMO-6	LUMO+1		HOMO-6	LUMO+1
									225.5	HOMO-7	LUMO+1	231.4	HOMO-4	LUMO+2
										HOMO-5	LUMO+1		HOMO-2	LUMO+2
									224.6	HOMO-8	LUMO+1	225.8	HOMO-5	LUMO+2
										HOMO-7	LUMO+1			
										HOMO-3	LUMO+2			
	PPD-6		PPD-7			PPD-8				PPD-9			PPD-10	
λ(nm)	trans	sition	λ(nm)	trans	sition	λ(nm)	tran	sition	λ(nm)	trans	sition	λ(nm)	trans	sition
371.5	НОМО	LUMO	370.8	HOMO-1	LUMO	371.1	HOMO-1	LUMO	371.1	HOMO-1	LUMO	370.2	HOMO-1	LUMO
294.8	HOMO-1	LUMO+1	311.2	НОМО	LUMO+1	310.9	HOMO-1	LUMO +1	328.9	номо	LUMO+1	304.6	НОМО	LUMO+1
260.4	HOMO-5	LUMO	260.4	HOMO-5	LUMO	260.3	HOMO-8	LUMO	261.6	HOMO-8	LUMO	261.4	HOMO-8	LUMO
225.8	HOMO-7	LUMO+1	256.0	номо	LUMO+3		HOMO-5	LUMO		HOMO-5	LUMO		HOMO-5	LUMO
	HOMO-5	LUMO+1	226.6	номо	LUMO+4	256.5	номо	LUMO+3	241.4	номо	LUMO+3	247.7	HOMO-8	LUMO
222.4	HOMO-1	LUMO+4	224.0	HOMO-5	LUMO+1	228.8	номо	LUMO+4	224.5	HOMO-8	LUMO+1	237.9	НОМО	LUMO+3
						224.2	HOMO-5	LUMO +1		HOMO-5	LUMO+1	225.7	HOMO-8	LUMO+1
													HOMO-5	LUMO+1

Table S1. Electron transitions responsible for the appearance of bands in UV-Vis spectra

PP	D-1	PP	D-2	PP	D-3	PP	D-4	PPD-5		
Energy (a.u.)	Orbital									
-0.05335	LUMO+2	-0.02842	LUMO+3	-0.06709	LUMO+1	-0.05389	LUMO+2	-0.0678	LUMO+2	
-0.06618	LUMO+1	-0.06577	LUMO+1	-0.09482	LUMO	-0.06664	LUMO+1	-0.09633	LUMO+1	
-0.09395	LUMO	-0.09362	LUMO	-0.2359	номо	-0.09459	LUMO	-0.1168	LUMO	
-0.23457	номо	-0.23405	номо	-0.27793	HOMO-3	-0.23557	номо	-0.23819	номо	
-0.28327	HOMO-4	-0.25238	HOMO-1	-0.28801	HOMO-5	-0.26156	HOMO-1	-0.282	HOMO-2	
-0.28756	HOMO-5	-0.28714	HOMO-5	-0.29507	HOMO-6	-0.27765	HOMO-3	-0.28684	HOMO-4	
-0.29726	HOMO-7	-0.2931	HOMO-6			-0.28793	HOMO-5	-0.2902	HOMO-5	
		-0.29653	HOMO-7			-0.29527	HOMO-6	-0.29998	HOMO-6	
						-0.29786	HOMO-7	-0.30797	HOMO-8	
						-0.30192	HOMO-8			
PP	D-6	PP	D-7	PP	D-8	PP	D-9	PPE	D-10	
Energy (a.u.)	Orbital									
-0.0194	LUMO+4	-0.01028	LUMO+4	-0.00995	LUMO+4	-0.0192	LUMO+3	-0.02571	LUMO+3	
-0.06554	LUMO+1	-0.02826	LUMO+3	-0.02546	LUMO+3	-0.06557	LUMO+1	-0.06607	LUMO+1	
-0.09363	LUMO	-0.06563	LUMO+1	-0.06562	LUMO+1	-0.09364	LUMO	-0.0939	LUMO	
-0.23409	номо	-0.09382	LUMO	-0.09363	LUMO	-0.22233	номо	-0.23389	номо	
-0.24049	HOMO-1	-0.23144	номо	-0.22796	номо	-0.23427	HOMO-1	-0.23473	HOMO-1	
-0.28692	HOMO-5	-0.23446	HOMO-1	-0.23423	HOMO-1	-0.28639	HOMO-5	-0.28646	HOMO-5	
-0.29625	HOMO-7	-0.28704	HOMO-5	-0.28697	HOMO-5	-0.29907	HOMO-8	-0.29623	HOMO-8	
				-0.29993	HOMO-8					

Table S2. Energies (a.u.) of orbitals of investigated PPDss

Compound							
	50	μM	100	μM	150	IC ₅₀ (μM)	
	20 min	60 min	20 min	60 min	20 min	60 min	
PPD-1	3.1±0.6	5.7±0.3	7.7±0.9	10.0±0.3	11.7±1.0	12.8±1.6	-
PPD-2	0.5±1.1	1.5±1.0	1.3±0.7	1.4±1.2	1.3±0.4	1.3±1.1	-
PPD-3	0.3±0.4	2.3±0.3	2.6±0.4	3.3±0.3	3.8±0.4	5.6±0.4	-
PPD-4	5.0±0.5	5.8±0.2	5.6±0.2	8.4±0.5	6.1±0.7	10.1±1.5	-
PPD-5	1.1±0.5	1.9±0.5	1.4±0.7	1.7±1.1	2.4±0.5	2.9±1.2	-
PPD-6	5.7±0.4	9.2±1.3	6.1±0.1	9.7±1.0	7.3±1.7	12.4±2.7	-
PPD-7	98.4±0.4	95.9±0.4	-	-	-	-	4.1±0.2
PPD-8	34.6±0.5	42.7±0.6	36.5±0.6	43.7±0.4	52.1±0.1	54.1±0.5	135.6±0.9
PPD-9	62.4±0.5	75.7±1.5	79.6±2.1	89.7±2.1	-	-	14.6±2.4
PPD-10	4.8±0.5	4.2±0.9	5.8±1.1	5.2±3.0	7.7±0.8	7.0±2.3	-
NDGA	-	-	-	-	-	-	1.80±0.01

Table S3. Interaction of the examined and reference compounds with the stable radical DPPH

Results represent mean values ± standard deviation (SD) of three independent measurements.

	HAT SET		SET-PT SPLET		HAT SET-PT		SPLET		HAT	SE	SET-PT		SPLET		
		PPD-7				PPD-8			PPD-9						
						thermo	dynami	cal paran	neters (k	d mol⁻¹)					
	BDE	IP	PDE	PA	ETE	BDE	IP	PDE	PA	ETE	BDE	IP	PDE	PA	ETE
	331	450	31	139	341	338	443	44	155	333	319	430	38	155	313
	330	450	30	138	341										
						rea	action e	nthalpie	s (kJ mo	l⁻¹)					
Radical	$\Delta H_{\rm BDE}$	ΔH_{IP}	ΔH_{PDE}	ΔH_{PA}	ΔH_{ete}	ΔH_{bde}	ΔH_{IP}	ΔH_{PDE}	ΔH_{PA}	ΔH_{ete}	ΔH_{bde}	ΔH_{IP}	ΔH_{PDE}	ΔH_{PA}	ΔH_{ete}
1001	-97	00	-185	-77	-21	-91	82	-172	-61	-29	-110	69	-178	-61	-49
OCH3	-99	00	-186	-78	-21										
	-107	88	-195	-86	-20	-100	82	-182	-71	-29	-119	69	-188	-70	-49
*OC(CH ₃) ₃	-108		-196	-87	-20										
	-168	8	-175	-67	-101	-161	1	-162	-51	-110	-180	-12	-168	-51	-129
ЧОН	-169		-176	-68	-101										
	-30	108	-138	-30	0	-23	102	-125	-15	-9	-42	89	-132	-14	-29
-OOH	-31		-140	-31	0										
	-23	110	-141	-32	9	-16	111	-128	-17	1	-35	98	-134	-16	-19
*OOCH ₃	-24	118	-142	-33	9										
	-22	00	-119	-10	-12	-15	90	-106	5	-21	-35	77	-112	6	-41
*00-CH=CH ₂	-23	96	-120	-11	-12										
	7	00	-84	25	-18	13	84	-71	40	-27	-6	71	-77	41	-46
DPPH	5	90	-85	24	-18										
	41	262	-222	41	0	48	257	-209	56	-9	29	244	-215	57	-29
0 ₂ •-	40	263	-223	40	0										

 Table S4.
 Calculated thermodynamical parameters (kJ mol⁻¹) of antioxidant mechanisms for PPDs-7-9 and reaction enthalpies (kJ mol⁻¹) for the reactions of these compounds with the selected radicals in water.

	HAT SET-		T-PT SPLET		HAT SET-PT		SPLET		HAT	SET-PT		SPLET			
		PPD-7				PPD-8			PPD-9						
						thermo	thermodynamical parameters (kJ mol ⁻¹)								
	BDE	IP	PDE	PA	ETE	BDE	IP	PDE	PA	ETE	BDE	IP	PDE	PA	ETE
	317	609	98	381	326	342	601	130	426	305	328	590	127	435	282
	316	608	96	378	327										
						rea	action e	nthalpies	s (kJ mo	⁻¹)					
Radical	$\Delta H_{\rm bde}$	ΔH_{IP}	ΔH_{PDE}	ΔH_{PA}	ΔH_{ete}	ΔH_{bde}	ΔH_{IP}	ΔH_{PDE}	ΔH_{PA}	ΔH_{ete}	ΔH_{bde}	ΔH_{IP}	ΔH_{PDE}	ΔH_{PA}	ΔH_{ete}
1001	-99	240	-439	-156	57	-74	333	-407	-110	37	-88	321	-410	-102	14
UCH3	-100	540	-441	-159	59										
••••(***)	-108	328	-436	-154	46	-83	321	-404	-108	25	-97	309	-407	-100	2
⁵ OC(CH ₃) ₃	-110		-438	-156	47										
	-31	377	-408	-125	94	-6	369	-375	-79	73	-21	358	-378	-71	51
OH	-33		-409	-128	95										
	-168	202	-460	-177	9	-143	285	-428	-131	-11	-157	273	-431	-123	-34
TOOH	-169	292	-462	-180	11										
10000	-23	200	-402	-119	97	3	372	-370	-74	76	-12	361	-373	-65	54
¹ OOCH ₃	-24	380	-404	-122	98										
	-24	222	-356	-73	50	1	325	-324	-27	29	-13	313	-327	-19	6
OU-CH=CH ₂	-25	332	-358	-76	51										
	-3	233	-236	46	-50	22	226	-204	92	-71	7	214	-207	100	-93
DPPH	-5		-238	44	-49										
	65		-798	-29	94	90	856	-766	17	73	76	844	-769	25	51
0 ₂ •-		863													

 Table S5. Calculated thermodynamical parameters (kJ mol⁻¹) of antioxidant mechanisms for PPDs-7-9 and reaction enthalpies (kJ mol⁻¹) for the reactions of these compounds with the selected radicals in benzene.

Empirical formula	$C_{40}H_{30}F_2N_4O_6$
Formula weight	700.68
Color, crystal shape	Yellow, needle
Crystal size (mm ³)	0.12 x 0.25 x 0.47
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	
<i>a</i> (Å)	22.7947(13)
b (Å)	7.8451(4)
<i>c</i> (Å)	37.255(2)
<i>V</i> (Å ³)	6662.3(6)
Ζ	8
Ζ'	16
D _{calc} (Mg/m ³)	1.397
μ (mm⁻¹)	0.103
F(000)	2912
artheta range for data collection (°)	2.80-29.17
Reflections collected	28282
Independent reflections, R _{int}	7874, 0.0471
Completeness to ϑ = 26.00°	99.9 %
Data / restraints / parameters	7874 / 0 / 473
Goodness-of-fit	1.030
Final R_1/wR_2 indices $[I > 2\sigma(I)]$	0.0615, 0.1176
Final R_1/wR_2 indices (all data)	0.1427, 0.1465
Largest diff. peak and hole (e ${\rm \AA^{-3}}$)	0.345, -0.181

Table S6. Crystallographic data and structure refinement for PPD-4

2-Acetyl-3-methyl-1-phenyl-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (PPD-1)

Yellow crystals – Mp 285-287 °C (ref. 288-290 °C;^[1] ¹H NMR (200 MHz, CDCl₃) δ : 2.09 (s, 3H), 3.08 (d, *J* = 1.4 Hz, 3H), 6.50 (q, *J* = 1.4, 1H), 7.43-7.30 (m, 3H), 7.48 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.84-7.79 (m, 2H), 8.22-8.26 (m, 1H), 8.36-8.32 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ : 14.5, 30.6, 66.1, 119.0, 127.3, 128.0, 128.3, 128.9, 129.1, 129.6, 133.4, 134.1, 136.5, 146.2, 154.2, 156.3, 193.3; IR (cm⁻¹): 3370, 2922, 2851, 1647, 1602, 1516, 1419, 1354, 1318, 1290, 1275, 1105, 961, 697; C₂₀H₁₆N₂O₃ (FW = 332.36): C, 72.28; N, 8.43; H, 4.85%; found: C, 72.01; N, 8.46; H, 4.87%.

2-Acetyl-3-methyl-1-(p-tolyl)-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (PPD-2)

Yellow powder – Mp 169-171 °C; ¹H NMR (200 MHz, CDCl₃) δ : 2.08 (s, 3H), 2.31 (s, 3H), 3.07 (d, *J* = 1.5 Hz, 3H), 6.46 (q, *J* = 1.4, 1H), 7.15 (s, 1H), 7.18 (s, 1H), 7.39-7.31 (m, 2H), 7.82-7.77 (m, 2H), 8.26-8.17 (m, 1H), 8.37-8.28 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ : 14.4, 21.2, 30.6, 65.9, 118.9, 127.3, 128.2, 128.9, 129.5, 133.3, 134.0, 139.0, 146.0, 154.1, 156.2, 193.5; IR (cm⁻¹): 3315, 2922, 1663, 1618, 1466, 1408, 1351, 1317, 1114, 1012, 831, 699, 559, 526; C₂₁H₁₈N₂O₃ (FW = 346.39): C, 72.82; N, 8.09; H, 5.24%; found: C, 72.53; N, 8.11; H, 5.22%;

2-Acetyl-1-(4-chlorophenyl)-3-methyl-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (PPD-3)

Yellow powder – Mp 173-174 °C (ref. 178-180 °C;^[1] ¹H NMR (200 MHz, CDCl₃) δ : 2.13 (s, 3H), 3.07 (d, *J* = 1.5 Hz, 3H), 6.47 (q, *J* = 1.4, 1H), 7.37-7.31 (m, 2H), 7.47-7.38 (m, 2H), 7.89-7.76 (m, 2H), 8.26-8.21 (m, 1H), 8.36-8.32 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ : 14.6, 30.6, 65.5, 118.9, 127.4, 128.1, 128.8, 129.1, 129.6, 133.5, 134.3, 135.1, 146.3, 154.3, 156.3, 192.9; IR (cm⁻¹): 3448, 2922, 2191, 1687, 1653, 1604, 1414, 1359, 1320, 1273, 1110, 821, 697, 614; C₂₀H₁₅CIN₂O₃ (FW = 366.08): C, 65.49; N, 7.64; H, 4.12%; found: C, 65.55; N, 7.67; H, 4.14%;

2-Acetyl-3-methyl-1-(4-nitrophenyl)-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (PPD-5)

Yellow powder – Mp 211-214 °C (ref. 215-217 °C;^[1]¹H NMR (200 MHz, CDCl₃) δ: 2.24 (s, 3H), 3.11 (d, *J* = 0.5 Hz, 3H), 6.59-6.54 (m, 1H), 7.67 (d, *J* = 8.3 Hz, 2H), 7.92-7.81 (m, 2H), 8.28-8.16 (m, 3H), 8.39-8.36 (m, 1H); ¹³C NMR (50 MHz, CDCl₃) δ: 14.8, 30.6, 65.3, 119.3, 124.0, 127.4, 128.2, 128.4, 129.0, 129.5, 133.8, 134.5, 143.7, 146.3, 148.1, 154.3, 156.3, 192.1;IR (cm⁻¹): 3436, 3075, 2922, 2850, 1689, 1648, 1603, 1516, 1470, 1414, 1355, 1321, 1292, 1108, 1015, 959, 876, 820, 694, 594; C₂₀H₁₅N₃O₅ (FW = 377.36): C, 63.66; N, 11.14; H, 4.01%; found: C, 63.43; N, 11.16; H, 4.03%;

PPD-5

Reference

[1] Kiasat AR, Noorizadeh S, Ghahremani M (2013) Saghanejad SJ, Experimental and theoretical study on one-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones catalyzed by nano-alumina sulforic acid. J Mol Struct 1036:216–225. doi:10.1016/j.molstruc.2012.11.014