Electronic Supplementary Information (ESI)

Tuning Chain Extenders Structure to Prepare High-

Performance Thermoplastic Polyurethane Elastomers

Wei Juan Xu^a, Jian Jun Wang^{*a}, Shi Yu Zhang^a, Jun Sun^a, Chuan Xiang Qin^a, Li Xing Dai^a, and Jia Jia Chen^b
^a College of Chemistry, Chemical Engineering and Materials, Science of Soochow University, Suzhou 215123, China
^b WestCHEM, School of Chemistry, the University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland (UK)
*Corresponding author. E-mail: wangjianjun@suda.edu.cn (Jian Jun Wang); Tel: 13915538961.

Table of contents:

1. Supplementary Table (Table S1)

2. Supplementary Figures (Fig. S1–S10)

1. Supplementary Table

Samples	7₅% (°C)	T _{max} (℃)	Ē _a (KJ/mol)	Young's modulus (MPa)	Stress, σ_{\max} (MPa)	Strain, E _{max} (%)	Toughness (GJ m ⁻³)
BDO-PU	298	300	110.6	7.3	27.5	932	10.6
monoFc-PU	321	350	/	6.0	6.0	758	2.4
bisFc-PU	345	369	214.9	13.9	42.3	1018	19.6

Table S1 Comparison of thermal stabilities and mechanical properties of BDO-PU, monoFc-PU, and bisFc-PU.

2. Supplementary Figures

Fig. S1 Gel permeation chromatograph curves of BDO-PU, monoFc-PU and bisFc-PU were performed on a Waters-1515 using DMF-*LiBr* as an eluent and polystyrene (PS) as standards, the sample concentration was 2 ~ 3 mg mL⁻¹, and the flow rate was 0.800 mL min⁻¹ at 40 °C. The BDO-PU ($M_n = 3.6 \times 10^4$ g/mol, $M_w/M_n = 2.0$), monoFc-PU ($M_n = 3.0 \times 10^4$ g/mol, $M_w/M_n = 1.6$), and bisFc-PU ($M_n = 2.9 \times 10^4$ g/mol, $M_w/M_n = 1.5$).

Fig. S2 (a) TGA and (b) DTG thermograms of- BDO-PU, monoFc-PU and bisFc-PU, at the heating rate of 10 °C min⁻¹ from 50 to 700 °C under nitrogen atmosphere.

Fig. S3 The thermal behaviors of hard segments for BDO-PU, monoFc-PU and bisFc-PU. The curves were derived from differential scanning calorimeter (DSC) of the second heating processes between 80 to 240 °C.

Fig. S4 Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) spectra at various temperature (150, 250, 325, 375 °C) of BDO-PU, monoFc-PU and bisFc-PU at the region of 3600 – 3000 cm⁻¹, 1780 - 1580 cm⁻¹ and 890 - 700 cm⁻¹.

Fig. S5 (a) Differential scanning calorimeter (DSC) curves of first cooling and second heating processes and (b) The crystallinity (X_c) for BDO-PU, monoFc-PU and bisFc-PU; Dynamic mechanical analysis to show (c) the storage modulus and (d) $tan \delta$ of BDO-PU, monoFc-PU and bisFc-PU from at a heating rate at 3 °C min⁻¹ from -100 to 80 °C. The degree of crystallinity (X_c) for those PUs were calculated via the equation of $X_c = \triangle H / \triangle H_0$, where $\triangle H$ is the heat fusion of PUs and $\triangle H_0$ is the enthalpy of fusion of the fully crystalline material of $\triangle H_0 = 172.2 \text{ J g}^{-1.31}$

Fig. S6 (a) WAXD and (b) SAXS profiles of BDO-PU, monoFc-PU and bisFc-PU.

Fig. S7 SEM images of BDO-PU, monoFc-PU and bisFc-PU, and partial enlargements of the marked positions.

Fig. S8 (a) ¹H-NMR and (b) ¹³C-NMR spectra for monoFc (600 Hz, $CDCI_3$).

Fig. S9 (a) ¹H-NMR and (b) ¹³C-NMR spectra for bisFc (600 Hz, $CDCI_3$).

Fig. S10 A) ¹H-NMR and B) ¹³C-NMR spectra for (a) BDO-PU, (b) monoFc-PU, and (c) bisFc-PU (600 Hz, DMF- d_7). (*) Signals of solvent.