Cyclization of secondarily structured oligonucleotides to singlestranded rings by using *Taq* DNA ligase at high temperatures

Yixiao Cui^{1,†}, Xutiange Han^{1,†}, Ran An^{1,2,*}, Guangqing Zhou¹, Makoto Komiyama^{1,3} and Xingguo Liang^{1,2,*}

1 College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China

2 Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and

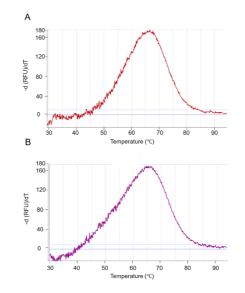
Technology, Qingdao 266003, China

3 National Institute for Materials Science (NIMS), Namiki, Tsukuba 305-0044, Japan

* To whom correspondence should be addressed. Tel: +86 532 82031086; Fax: +86 532 82031086; Email: liangxg@ouc.edu.cn

Correspondence may also be addressed to Ran An. Tel: +86 532 82031318; Fax: +86 532 82031086; Email: ar@ouc.edu.cn

[†]These authors contributed equally to this work as first authors.


Number of Pages: 7

Number of Figures: 5

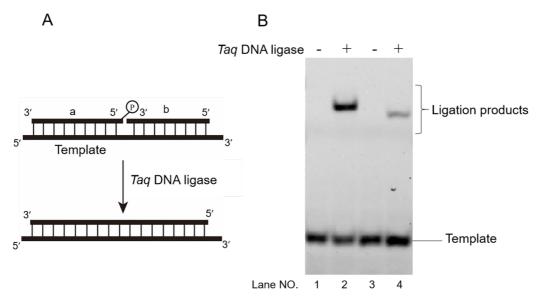
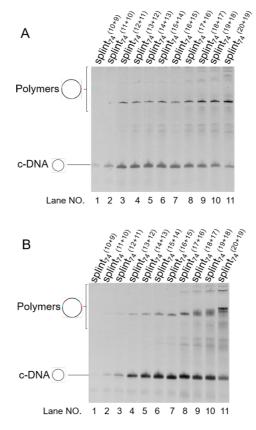

Number of Tables: 1

Table S1	. The I-DNAs and	splints u	used in	Figures 2-5.

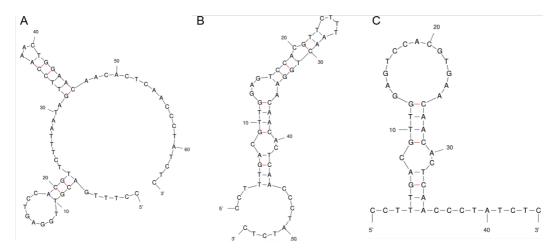
Name	Sequences $(5' \rightarrow 3')$	Length (nt)	
splint ₇₄ ⁽¹⁰⁺⁹⁾	ACGTCAAAGGGAGATAGGG	19	
splint ₇₄ (11+10)	AACGTCAAAGGGAGATAGGGT	21	
splint ₇₄ (12+11)	CAACGTCAAAGGGAGATAGGGTT	23	
splint ₇₄ ⁽¹⁴⁺¹³⁾	TCCAACGTCAAAGGGAGATAGGGTTGA	27	
splint ₇₄ ⁽¹⁵⁺¹⁴⁾	CTCCAACGTCAAAGGGAGATAGGGTTGAG	29	
splint ₇₄ ⁽¹⁶⁺¹⁵⁾	ACTCCAACGTCAAAGGGAGATAGGGTTGAGT	31	
splint ₇₄ (17+16)	GACTCCAACGTCAAAGGGAGATAGGGTTGAGTG	33	
splint ₇₄ ⁽¹⁸⁺¹⁷⁾	GGACTCCAACGTCAAAGGGAGATAGGGTTGAGTGT	35	
splint ₇₄ ⁽¹⁹⁺¹⁸⁾	TGGACTCCAACGTCAAAGGGAGATAGGGTTGAGTGTT	37	
splint ₇₄ ⁽²⁰⁺¹⁹⁾	GTGGACTCCAACGTCAAAGGGAGATAGGGTTGAGTGTTG	39	
I-DNA _{0GC}	TATTTAATATTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTG	74	
	GAACAACACTCAATTATATATA		
splint _{0GC} (9+8)	ΤΑΤΤΑΑΑΤΑΤΑΤΑΤΑΤΑ	17	
splint _{0GC} ⁽⁹⁺⁹⁾	ΤΑΤΤΑΑΑΤΑΤΑΤΑΤΑΤΑ	18	
splintogc ⁽¹⁰⁺⁹⁾	ΑΤΑΤΤΑΑΑΤΑΤΑΤΑΤΑΤΑΑ	19	
I-DNA _{6GC}	TCTTTGACATTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTG		
	GAACAACACTCAATTCTATCTC		
splint _{6GC} ⁽⁹⁺⁸⁾	TGTCAAAGAGAGATAGA	17	
splint _{6GC} ⁽⁹⁺⁹⁾	TGTCAAAGAGAGATAGAA	18	
splint _{6GC} ⁽¹⁰⁺⁹⁾	ATGTCAAAGAGAGATAGAA	19	
I-DNA _{11GC}	TCGCTTTCGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACT	74	
	GGAACAACACTCAAAGGGACCTC		
splint _{11GC} ⁽⁹⁺⁸⁾	CGAAAGCGAGAGGTCCC	17	
splint _{11GC} ⁽⁹⁺⁹⁾	CGAAAGCGAGAGGTCCCT	18	
splint _{11GC} ⁽¹⁰⁺⁹⁾	ACGAAAGCGAGAGGTCCCT	19	
I-DNA _{15GC}	CCGCCTCTGGTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACT	74	
	GGAACAACACTCAACGGGACCTC		
splint _{13GC} ⁽⁹⁺⁸⁾	CAGAGGCGGGAGGTCCC	17	
splint _{14GC} ⁽⁹⁺⁹⁾	CAGAGGCGGGAGGTCCCG	18	
splint _{15GC} ⁽¹⁰⁺⁹⁾	CCAGAGGCGGGGGGGGCCCG	19	
I-DNA _{19GC}	CCGCCGCCGGTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAAC	74	
	TGGAACAACACTCAACGGGCCCGC		
splint _{17GC} ⁽⁹⁺⁸⁾	CGGCGGCGGGCGGGCCC	17	
splint _{18GC} ⁽⁹⁺⁹⁾	CGGCGGCGGGCGGGCCCG	18	
splint _{19GC} ⁽¹⁰⁺⁹⁾	CCGGCGGGCGGGCCCG	19	
I-DNA ₆₄	CCTTTGACGTTGGAGTCCACGTTCTTTAATAGTTCCAAACTGGAACAACAC	64	
	TCAACCCTATCTC		
I-DNA ₅₄	CCTTTGACGTTGGAGTCCACGTTCTTTAACTGGAACAACACTCAACCCTAT	54	
	CTC		
I-DNA44	CCTTTGACGTTGGAGTCCACGTGAACAACACTCAACCCTATCTC	44	
1 11/144		77	

Figure S1. T_m of (A) I-DNA₇₄ and (B) I-DNA₅₉ were respectively 66.4°C and 65.1°C. High resolution melting (HRM) was used to T_m measurement. The solutions of I-DNAs (1 µM) were prepared in 1× *Taq* DNA ligase buffer containing EvaGreen (1×). The mixed oligomer solution (10 µL) was pipetted into 96-well microtiter plates and then transferred to a PikoReal Real-Time PCR instrument (Thermo Scientific, Finland). Annealing was performed with a cooling rate of 0.1°C/s from 95°C to 10°C; then, fluorescence dates were collected over a temperature range of 10–95°C in 0.1°C increments (the holding time was 2 seconds). There are at least three parallel tests in one plate.

Figure S2. The ligation of nicked DNA by *Taq* DNA ligase (A). (B) the nicked DNA duplex substrate was formed by two short oligonucleotides (a and b) to a longer complementary oligonucleotide template (19 nt). The short oligonucleotide "a" is 9 nt ($L_{5'-9 nt}$) and "b" is 9 nt ($L_{3'-9nt}$) or 8 nt ($L_{3'-8nt}$). Reaction conditions: $[L_{5'-9 nt}] = 5 \ \mu\text{M}$; $[L_{3'-9nt}] = 5 \ \mu\text{M}$ (Lanes 1 and 2); $[L_{3'-8nt}] = 5 \ \mu\text{M}$ (Lanes 3 and 4); [template] = 5 μM ; $1 \times Taq$ DNA ligase buffer at 90°C for 3 min and cooled with ice, then *Taq* DNA ligase (40 U) was added, and the mixture was incubated at 65°C for 12 h. Lanes 1 and 3 without *Taq* DNA ligase are as controls of Lanes 2 and 4.


Sequences of oligonucleotides used here are shown as follows:

Template: CCAGAGGCGGGGGGGGGGCCCG (19 nt)


L^{5'}-9 nt: CCGCCTCTG (9 nt)

L3^{'- 9nt}: CTCCAGGGC (9 nt)

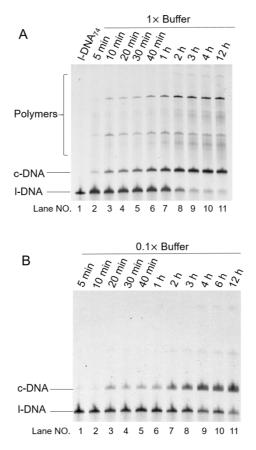

L3'- 8nt: CTCCAGGG (8 nt)

Figure S3. Exonuclease reaction to confirm the ring-structure of product for the cyclization of I-DNA₇₄. The reaction mixtures obtained from I-DNA₇₄ using *Taq* DNA ligase (A) at 65°C and (B) 70°C with various splints were treated with 20 U Exonuclease I in 1x Exonuclease I buffer at 37°C for 12 h. After the *Taq* DNA ligase reactions, the mixtures were heated at 85°C for 15 min and analyzed by gel electrophoresis.

Figure S4. Secondary structures of (A) I-DNA₆₄, (B) I-DNA₅₄ and (C) I-DNA₄₄ obtained by Mfold ([Mg²⁺] = 10 mM, 25°C).

Figure S5. Time-courses of cyclization of I-DNA₇₄ by *Taq* DNA ligase at 65°C in 1× *Taq* DNA ligase buffer (A) and in 0.1× *Taq* DNA ligase buffer (B). [I-DNA₇₄] = 5 μ M, [splint₇₄⁽¹⁵⁺¹⁴⁾] = 10 μ M, 40 U *Taq* DNA ligase(in 20 μ L).