A channel-structured Eu-based metal-organic framework with a

zwitterionic ligand for selectively sensing Fe³⁺ ion

Yong-Qing Huang, *^a Huai-Ying Chen,^a Yang Wang,^a Yong-He Ren,^a Zong-Ge Li,^a Lu-Chao Li^a and Yan Wang^b

^aState Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the

Ministry of Science and Technology, College of Chemical and Environmental Engineering, Shandong University

of Science and Technology, Qingdao 266590, China

^bSchool of Chemistry and Chemical Engineering, Anhui Key Laboratory of Functional Coordination Compounds,

Anqing Normal University, Anqing 246011, China.

Corresponding Author: Dr. Yong-Qing Huang Email: yqhuangskd@163.com

Fig. S1 Powder X-ray diffraction (PXRD) pattern of complex 1.

Fig. S2 TGA plots of complex 1.

Fig. S3 Powder X-ray diffraction (PXRD) pattern of complex 1 in aqueous solution with different pH value.

Fig. S4 The solid-state fluorescence spectra of ligand $H_2(IMS1)Cl$ and complex 1 upon the excitation at 340 nm and 395 nm, respectively.

Fig. S5 The solid-state excitation spectra of ligand $H_2(IMS1)Cl$ and complex 1 upon the emission at 397 nm and 618 nm, respectively.

Fig. S6 Fluorescence response of 1 towards 0.1 M Fe^{3+} and different metal cations upon the excitation at 395 nm.

Fig.S7 Comparison of the luminescence intensity of ligand $H_2(IMS1)Cl$ in different MClx aqueous solutions (0.1 M) upon excitation at 340 nm.

Fig. S8 Powder X-ray diffraction (PXRD) pattern of complex 1 in different cationic aqueous solution.

Detectors based	Detecting range of	K _{sv}	LOD	Media	Ref
on Complexes	Fe ³⁺ concentration (mol/L)	(L/mol)	(mol/L)		
$[(CH_3)_2NH_2] \cdot [Tb(bptc)]$	0.0 - 1.0×10 ⁻⁴	2.6×10 ⁵	1.8×10 ⁻⁴	Ethanol	1
xsolvents					
$[Zn_5(hfipbb)_4(trz)_2(H_2O)_2]$	0.0 -1.0×10 ⁻⁴	4.1×10 ⁵	1.8×10-4	H ₂ O	2
[Cd(Hcbic)] _n	0.0-1.3×10 ⁻³	1.8×10 ⁵	3.1×10-5	H ₂ O	3
[Eu(Hpzbc) ₂ (NO ₃)]·H ₂ O	0.0 - 2.2×10 ⁻⁴		2.6×10-5	Ethanol	4
$[Zn_2(L)_2(bpe)_2(H_2O)_2]$	0.0 - 1.0×10 ⁻³	2.4×10 ³	2.5×10-5	H ₂ O	5
[Eu(IMS1) ₂]CL·4H ₂ O	0.0 - 1.0×10 ⁻³	5.9×10 ³	2.3×10 ⁻⁵	H ₂ O	This work
${[Eu_2L_{1.5}(H_2O)_2EtOH] \cdot DMF}_n$	0.0-0.5×10 ⁻³	2.9×10 ³	1.0×10-5	DMF	6
$\{(Me_2NH_2)[Tb(oba)_2]\cdot(Hatz)\cdot(H_2O)_{1.5}\}_n$	0.0 - 1.0×10 ⁻⁴	3.4×10^{4}	1.0×10-6	H ₂ O	7
${Eu-HODA(H_2O)_4(H_2O)}_n$	0.0-3.0×10 ⁻⁴	2.1×10^{4}	1.0×10-7	H ₂ O	8

Table S1 Comparison of the detecting range, Ksv, LOD and Media

 H_4bptc = tetracarboxylic acid

H₂hfipbb = 4, 4'-(hexafluoroisopropylidene)bis(benzoic acid), Htrz = 1H-1,2,3-triazole

 H_3 cbic = 1-(4-carboxybenz-yl)-1H-benzoimidazole-5, 6-dicarboxylic acid

H₂pzbc = 3-(1H-pyrazol-3-yl) benzoic acid

L =4,4'-((1,2- phenylenebis(methylene))bis(oxy))dibenzoic acid

bpe = (E)-1, 2-di(pyridin-4-yl)ethene

L= 5, 5 '-(carbonyl-bis(azanediyl))diisophthalic acid

H₂oba = 4, 4'-oxybis(benzoate), Hatz = 3-amino-1,2,4-triazole

 $H_4ODA = 2, 2', 3, 3'$ -Oxidiphthalic acid

[1] X.- L. Zhao, D. Tian, Q. Gao, H.- W. Sun, J. Xu, X.- H. Bu, Dalton Trans. 2016, 45, 1040-1046.

[2] B.- L. Hou, D.Tian and Y. - Q. Lan, Inorg. Chem. 2016, 55, 10580-10586.

[3] F. - F. Li, M. - L. Zhu, L. - P. Lu, Journal of Solid State Chemistry, 2018, 261, 31-36.

[4] G. - P. Li, G. Liu, Y.- Z. Li, L. Hou, Y.- Y. Wang, and Z.- H. Zhu, Inorg. Chem. 2016, 55, 3952–3959.

[5] F.- L. Hu, Y.- X. Shi, H. - H. Chen and J. - P. Lang, Dalton Trans. 2015, 44, 18795-18803.

[6] W. Liu, X. Huang, C. Xu, C. - Y. Chen, L. - Z. Yang, W. Dou, W. - M. Chen, H. Yang, W. - S. Liu, Chem. Eur. J.2016, **22**, 1-9.

[7] D. - M. Chen, N. - N. Zhang, C. - S. Liu and M. Du, J. Mater. Chem. C, 2015, 2, 1-7.

[8] J. Wang, M. Jiang, L. Yan, Inorg. Chem, 2016, 55, 12660-12668.

Fig. S9 The reversibility test for sensing Fe3+. The luminescence intensity of 1, recycled 1 and $Fe^{3+}@1$.

Fig. S10 The PXRD pattern of 1 after five sensing-recovery circles.

Fig. S11 Absorption spectra of water-solution containing Fe^{3+} and other metal ions (10⁻⁴ M), suspension of complex 1 and suspension of complex 1 with Fe^{3+} .

.