High sensitive sensing of hydroquinone and catechol based on $ß-$ cyclodextrin modified carbon dots
 Zhong-Yi Lin ${ }^{\text {a }}$, Yuan-Jie Guo ${ }^{\text {a }}$, Yu-Syuan Lin ${ }^{\text {a }}$, Chih-Jui Chang ${ }^{\text {c }}$, Tai-Chia Chiu ${ }^{\mathrm{a}, \mathrm{b}}$, Cho-Chun Hu ${ }^{\mathrm{a}, \mathrm{b} *}$

${ }^{a}$ Department of Applied Science, National Taitung University, Taitung, 95002, Taiwan
${ }^{b}$ Agriculture Products Inspection Center, National Taitung University, Taitung,95002, Taiwan
${ }^{\text {c D Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan }}$

Zhong-Yi Lin: a22695559@gmail.com
Yuan-Jie Guo: ooooppppoooo1@gmail.com

Yu-Syuan Lin: hero1245337@gmail.com

Chih-Jui Chang: cjchang@mail.tcu.edu.tw

Tai-Chia Chiu: tcchiu@nttu.edu.tw
Cho-Chun Hu: cchu@nttu.edu.tw

Keywords: Carbon dot; ß-cyclodextrin; Hydroquinone; Catechol

Fig. S1. Fluorescence spectra of C-dot and amono-6-OTs- $\beta-\mathrm{CD}$ mixed with the different ratio ([mono-6-OTs- $\beta-\mathrm{CD}] /[\mathrm{C}-\mathrm{dot}] \mathrm{v} / \mathrm{v}$: (black) $3: 1$, (red) $4: 1$, (blue) $6: 1$, (pink) $9: 1$, (green) $12: 1$.

Fig. S2. Fluorescence spectra of the synthesized C-dot@ β-CD at variety incubate time.

Fig. S3. (A) The stability of $\mathrm{C}-\mathrm{dot} @ \beta$ - CD at pH ranges from 5 to 12 , (B) Stability of C - $\operatorname{dot} @ \beta$ - CD in different concentrations of NaCl ranging from 0.1 mM to 1 M , (C) Photostability of C-dot $@ \beta$-CD, (D)Influence of different solvents (80% of total volume) on the fluorescence properties.

Fig. S4. UV-vis absorption of C-dot@ β-CD(black), CC (red), $\mathrm{HQ}($ blue) and C-dot@ β-CD fluorescent emission(green).

Fig. S5. Time-resolved decay of C-dot $@ \beta$-CD (black) with HQ (red), with CC(blue).

Fig. S6. Cell viability assay of human HeLa cells against C-dot@ β-CD at arranged concentrations from $0.35-1.4 \mathrm{mg} / \mathrm{mL}$.

TableS1. Time-resolved decay of C-dots in the absence and presence of catechol and hydroquinone

Sample	$\tau_{1}(\mathrm{~ns})$	Area (\%)	$\tau_{2}(\mathrm{~ns})$	Area (\%)	Average $\tau(n s)$
C-dot@ β-CD	13.65	64.08	3.38	35.92	9.96
C-dot@ β-CD	5.11	62.80	1.73	37.20	3.85
+ CC					
C-dot@ β-CD	5.63	63.68	1.96	36.32	4.30
+ HQ					

