Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary Information for RSC Advances

Discovery of zirconium dioxides for the design of better oxygen-ion conductors

using efficient algorithms beyond data mining

Joohwi Lee^{*a}, Nobuko Ohba^a, and Ryoji Asahi^a

^aToyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan

* E-mail: <u>j-lee@mosk.tytlabs.co.jp</u> (J. Lee)

Space group	Oxide reported in	Index
type	Materials Project	
	Database	
Ama2	SiO ₂	Too large displacement after atomic relaxation of supercell with a V_0
$C222_{1}$	SiO_2	Too large displacement after atomic relaxation of supercell with a V_0
Cmce	SiO_2	Difficulty in convergence for structural optimization
Fd-3m	TiO ₂	Too large displacement after atomic relaxation of supercell with a $V_{\rm O}$
I-42d	SiO_2	Difficulty of convergence for structural optimization
Ima2	SiO_2	Too large displacement after atomic relaxation of supercell with a V_0
$P2_1$	SiO_2	Too large displacement after atomic relaxation of supercell with a V_0
$P3_{1}21$	TiO ₂	Too large displacement after atomic relaxation of supercell with a V_0
$P6_{2}22$	SiO_2	Difficulty of convergence for structural optimization
$P6_{3}22$	SiO_2	Too large displacement after atomic relaxation of supercell with a V_0
$P6_{4}22$	SiO_2	Too large displacement after atomic relaxation of supercell with a $V_{\rm O}$
$P6_{5}22$	SiO_2	Too large displacement after atomic relaxation of supercell with a $V_{\rm O}$
Pnnm	SiO_2	Difficulty in convergence for structural optimization

Table S1 List of excluded crystal structures which were reoptimized for ZrO_2 .

Fig. S1 Comparison of (a) E_g and (b) E_v obtained by the GGA and GGA+U methods of the 16 crystal structures of *reoptimized-ZrO*₂. The E_g^{GGA+U} are all larger than the E_g^{GGA} , whereas the E_v from the GGA+U are slightly larger or similar as the E_v from the GGA. Diagonal line denotes that the values of the GGA and GGA+U become the same.

 Table S2 Chemical potential of O for the O-rich condition.

	Energy (eV/atom)	Index
From energy of O atom	-1.57	
From energy of O_2 gas molecule	-4.93	Used in this study.
From energy of O_2 gas molecule which is corrected	-4.25	From [Wang et al., Phys. Rev.
by comparison of formation energy of various oxides		B 2006, 73 , 195107].
between the theory and experiment		

Space group	$E_{\alpha}^{\text{GGA+U}}$	Averaged $E_{\rm m}(V_{\rm O}^0)$	$E_{\rm w}(V_{\rm O}^{0})$	$E_{\rm v}$ ($V_{\rm O}^{2+}$) at the	Thermodynamic
Space Broap	Ξg	11, et age a 27 († 0)	27(70)	center of E_{α}	transition level $\varepsilon(2+/0)^{a}$
$P2_{1}/c$	3.53	6.15	6.16	4.52	2.59
-			6.13	5.32	2.17
Pbca	3.52	6.15	6.14	4.50	2.58
			6.15	5.43	2.13
$I4_1/amd$	3.89	6.40	6.40	5.03	2.63
$P2_1/m$	3.85	6.40	6.41	5.35	2.46
			6.38	4.98	2.62
C2/c	3.85	6.38	6.38	4.89	2.67
$Pca2_1$	3.78	5.93	5.93	5.02	2.35
			5.93	4.80	2.46
$P4_{1}2_{1}2$	3.51	6.71	6.71	5.54	2.35
$P4_2/mnm$	3.55	6.68	6.68	5.56	2.34
Pnma	4.11	6.06		NA ^b	NA ^b
$P4_2/nmc$	3.89	5.81	5.81	3.41	3.14
Pbcn	3.85	5.82	5.82	3.62	3.03
Fm-3m	3.38	5.84	5.84	3.63	2.85
P4/n	3.34	5.71	5.80	3.15	3.00
			5.35	3.42	2.64
			5.71	4.12	2.47
			5.67	3.96	2.53
$Pna2_1$	2.80	5.14	5.30	3.48	2.31
			4.97	3.64	2.07
<i>R</i> -3	3.75	5.93	5.87	4.07	2.78
			6.00	4.20	2.78
$P6_3mc$	3.75	6.51		NA ^b	NA ^b

Table S3 Computed E_{ν} for the 16 crystal structures of *reoptimized-ZrO*₂. Abbreviation of VBM indicates the valence band maximum. All the values are in eV.

^a If the image charge correction for the charged V_0 are performed, the location of transition levels may become deeper because the E_v for the $V_0^{2^+}$ at the VBM are mostly underestimated without the correction [Kumagai *et al.*, Phys. Rev. B 2014, **89**, 195205]. However, the correction may not affect the fact that the transition levels of $\varepsilon(2+/0)$ are deep; it is known that the $E_v(V_0^{2^+})$ in the *Fm*-3*m* structure of ZrO₂ can be corrected with ~0.25 eV increased value when the dielectric constant of ~37 is used [Liu *et al.*, Comput. Mater. Sci. 2014, **92**, 22].

^b Not applicable.

Fig. S2 (a) Three types of migration paths for the V_0 to migrate to the nearest-neighboring O sites are considered with the cutoff radius of 3.5 Å. As an example, $P4_2/nmc$ structure of ZrO_2 is shown. Relative energies of the intermediates images (states) for a migration of V_0 on the (b) path A < 110>, (c) path B < 001>, and (d) path *C*. Among three types of the migration paths, the lowest E_m of this structure is 0.34 eV on the path *A*.

Fig. S3 Pattern of energy diagram for the minimum barrier energy for a V_0 to migrate into the original site in the nearest-neighboring supercell from the examples of the (a) Fm-3m, (b) $Pna2_1$, (c) $P2_1/c$, (d) R-3, and (e) P4/n structures of ZrO₂. In cases of (a)–(c), a V_0 can migrate into the original site in the nearest neighboring supercell with only one type of migration. In cases of (d) and (e), a V_0 should migrate into the original site in the nearest-neighboring supercell with different types of migrations. The numerical values are in eV.

Pattern	<pre># of types of O sites</pre>	Crystal structures	Description ^a
Pattern	1	$I4_1/amd, C2/c, P4_12_12,$	The $V_{\rm O}$ at an O-I site can hop between the O-I sites with one kind
(a)		$P4_2/mnm$, $P4_2/nmc$,	of barrier energy.
		Pbcn, Fm-3m	$(0-I \rightarrow 0-I \rightarrow 0-I \rightarrow 0-I \rightarrow 0-I)$
Pattern	≥ 2	$Pna2_1$	The V_0 at an O-I site can hop between O-I and O-II sites
(b)			alternatively with one kind of barrier energy.
			$(O-I \rightarrow O-II \rightarrow O-I \rightarrow O-II \rightarrow O-I)$
Pattern	≥ 2	$P2_1/c$, $Pbca$, $P2_1/m$,	The $V_{\rm O}$ at an O-I site can hop between the O-I sites with one kind
(c)		$Pca2_1$	of barrier energy because this barrier energy is lower than the
			lowest barrier energy between O-I and O-II sites
			$(0-I \rightarrow 0-I \rightarrow 0-I \rightarrow 0-I \rightarrow 0-I)$
Pattern	≥ 2	R-3, Gen-01, Gen-02,	The $V_{\rm O}$ should hop between two different kinds of $V_{\rm O}$ sites with at
(d)		Gen-08	least two different kinds of barrier energy.
			$(0-I \rightarrow 0-I \rightarrow 0-II \rightarrow 0-II \rightarrow 0-I)$
Pattern	≥ 2	P4/n	The $V_{\rm O}$ at an O-I site should hop between the O-I sites with at least
(e)			two different kinds of barrier energy.
			$(O-I \rightarrow (by E^m_1) \rightarrow O-I \rightarrow (by E^m_2) \rightarrow O-I \rightarrow (by E^m_1) \rightarrow O-I, E^m_1 <$
			E_{2}^{m}

Table S4 Additional description for the pattern of the minimum barrier energy which is shown in Fig. S3.

^a O-*I* is a V_0 site with the lowest energy, and O-*II* is another site with the second lowest energy.

Fig. S4 Radial distribution functions according to O–Zr distances of the 30 crystal structures from *reoptimized-ZrO*₂ and *generated-ZrO*₂. From the bottom to the top, the relative ΔE_f (compared with that of the ground-state $P2_1/c$ structure) of crystal structures increase.

Crystal Structure	x (Å)	y (Å)	z (Å)	α (°)	β (°)	γ (°)	Number of atoms
$P4_2/nmc$	3.626	3.626	5.174	90.00	90.00	90.00	2 Zr, 4 O
Gen-08	10.420	3.651	3.655	90.02	89.85	90.21	4 Zr, 8 O

Table S5 Lattice parameters of unit-cells [Fig. 9(a) and (b)] of two crystal structures of ZrO₂.

Fig. S5 Phonon dispersion curves of (a) tetragonal fluorite $(P4_2/nmc)$ and (b) cubic fluorite (Fm-3m) structures of ZrO₂.