Supporting Information for

Hydrozone-based Cobalt Complexes Toward Multielectron Redox

and Spin Crossover

Wei Huang, Yujie Li, Juan Yong, Yang Liu and Dayu Wu*

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology,

Collaborative Innovation Center of Advanced Catalysis & Green Manufacturing,

School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu

213164, China.

Email: wudy@cczu.edu.cn.

Fig. S1. ¹H-NMR spectra of HL1 (DMSO-d⁶)

Fig. S4. ¹H-NMR spectra of HL4 (DMSO-d⁶).

Fig. S5.IR spectrum of complex 1.

Fig. S6.IR spectrum of complex 2.

Fig. S7. IR spectrum of complex 3_{CIO4}·CH₃OH.

Fig. S8.IR spectrum of complex 4.

Fig. S9. Crystal structure of the compound 3_{BF4} ·0.5CH₃OH.

Fig. S10. The combined plot of magnetic data for mononuclear compound 3_{BF4} and the reported tetranuclear grid complex.

Fig. S11.(a)CV study of an acetonitrile solution of complex 1 (0.1 mM) referenced against Fc^+/Fc . (b) Plots of anodic and cathodic peak currents at redox process II versus the square root of the scan rates, $v^{1/2}$.

Scan rate(mVs ⁻¹)		Co ³⁻	+/2+		Co ^{2+/+}				
	E _{ox} (v)	$E_{red}(v)$	ΔΕ	$E_{m}(v)$	E _{ox} (v)	$E_{red}(v)$	ΔΕ	$E_{m}(v)$	
50	-0.905	-0.965	0.060	-0.935	-1.667	-1.732	0.065	-1.699	
100	-0.923	-0.974	0.051	-0.948	-1.672	-1.741	0.069	-1.706	
150	-0.926	-0.983	0.057	-0.954	-1.676	-1.746	0.070	-1.711	
200	-0.931	-0.985	0.054	-0.958	-1.676	-1.746	0.070	-1.711	
250	-0.934	-0.989	0.055	-0.962	-1.682	-1.745	0.063	-1.714	
300	-0.936	-0.992	0.056	-0.964	-1.668	-1.744	0.076	-1.706	
350	-0.940	-0.981	0.041	-0.960	-1.671	-1.745	0.074	-1.708	
400	-0.942	-0.986	0.044	-0.964	-1.672	-1.748	0.076	-1.710	
450	-0.943	-0.987	0.044	-0.965	-1.678	-1.739	0.061	-1.708	
500	-0.948	-0.989	0.041	-0.968	-1.673	-1.742	0.069	-1.708	

Table S1. Summary of Electrochemical Data for Cobalt(III) complex 1.

Fig. S12. (a) CV study of an acetonitrile solution of complex 2 (0.1 mM) referenced against Fc⁺/Fc. (b) Plots of anodic and cathodic peak currents at redox process II versus the square root of the scan rates, $v^{1/2}$.

Scan rate(mVs ⁻¹)		Co ³	+/2+		Co ^{2+/+}				
	E _{ox} (v)	$E_{red}(v)$	ΔΕ	$E_{m}(v)$	E _{ox} (v)	$E_{red}(v)$	ΔΕ	$E_{m}(v)$	
50	-0.976	-1.061	0.085	-1.018	-1.520	-1.594	0.074	-1.557	
100	-0.971	-1.062	0.091	-1.016	-1.502	-1.607	0.105	-1.554	
150	-0.971	-1.064	0.093	-1.018	-1.504	-1.609	0.105	-1.556	
200	-0.970	-1.066	0.096	-1.018	-1.503	-1.611	0.108	-1.557	
250	-0.969	-1.065	0.096	-1.017	-1.502	-1.619	0.117	-1.560	
300	-0.967	-1.066	0.099	-1.016	-1.501	-1.620	0.119	-1.560	
350	-0.965	-1.067	0.102	-1.016	-1.500	-1.622	0.122	-1.561	
400	-0.964	-1.068	0.104	-1.016	-1.500	-1.623	0.123	-1.562	
450	-0.964	-1.070	0.106	-1.017	-1.499	-1.628	0.129	-1.564	
500	-0.964	-1.071	0.107	-1.018	-1.498	-1.629	0.131	-1.564	

Table S2. Summary of Electrochemical Data for Cobalt(III) complex 2.

Fig. S13. (a) CV study of an acetonitrile solution of Complex 3_{ClO4} (0.1 mM) referenced against Fc⁺/Fc. (b) Plots of anodic and cathodic peak currents at redox process II versus the square root of the scan rates, $v^{1/2}$.

\mathbf{C} \mathbf{V} \mathbf{V} \mathbf{V}	Co ^{2+/+}								
Scan rate(mvs^{-1})	E _{ox} (v)	$E_{red}(v)$	ΔΕ	$E_{m}(v)$					
100	-1.660	-1.738	0.078	-1.699					
200	-1.657	-1.739	0.082	-1.698					
300	-1.653	-1.739	0.086	-1.696					
400	-1.652	-1.740	0.088	-1.696					
500	-1.651	-1.740	0.089	-1.696					

Table S3. Summary of Electrochemical Data for Cobalt(III) complex 3_{CIO4} .

Fig. S14. (a) CV study of an acetonitrile solution of complex **4** (0.1 mM) referenced against Fc^+/Fc . (b) Plots of anodic and cathodic peak currents at redox process II versus the square root of the scan rates, $v^{1/2}$.

Scan	Co ^{3+/2+}			Co ^{2+/+}				Ligand-base				
rate(mVs ⁻¹)	$E_{red}(v)$	E _{ox} (v)	ΔΕ	$E_{m}(v)$	$E_{red}(v)$	E _{ox} (v)	ΔΕ	$E_{m}(v)$	$E_{red}(v)$	E _{ox} (v)	ΔΕ	$E_{m}(v)$
50	-0.555	-0.490	-0.065	-0.522	-1.548	-1.486	-0.062	-1.517	-2.185	-2.115	-0.070	-2.150
100	-0.557	-0.489	-0.068	-0.523	-1.546	-1.484	-0.062	-1.515	-2.192	-2.112	-0.080	-2.152
150	-0.559	-0.489	-0.070	-0.524	-1.550	-1.486	-0.064	-1.518	-2.194	-2.113	-0.081	-2.158
200	-0.553	-0.487	-0.066	-0.520	-1.548	-1.484	-0.064	-1.516	-2.185	-2.115	-0.070	-2.150
250	-0.558	-0.486	-0.072	-0.522	-1.554	-1.483	-0.071	-1.518	-2.187	-2.117	-0.070	-2.152
300	-0.558	-0.487	-0.071	-0.522	-1.552	-1.482	-0.070	-1.517	-2.188	-2.113	-0.075	-2.150
350	-0.559	-0.485	-0.074	-0.522	-1.557	-1.481	-0.076	-1.519	-2.192	-2.119	-0.073	-2.156
400	-0.560	-0.486	-0.074	-0.523	-1.553	-1.480	-0.073	-1.516	-2.188	-2.116	-0.072	-2.152
450	-0.562	-0.484	-0.078	-0.523	-1.558	-1.480	-0.078	-1.519	-2.195	-2.107	-0.088	-2.151
500	-0.560	-0.484	-0.076	-0.522	-1.554	-1.479	-0.075	-1.516	-2.191	-2.104	-0.087	-2.148

Table S4. Summary of Electrochemical Data for Cobalt(III) complex 4.