Supporting information

Theoretical design of porphyrin sensitizers with different acceptors for its application in dye-sensitized solar cells

Xingyi Jin,^{a*} Dongyuan Li,^a Libo Sun,^a Cheng-Long Wang,^b and Fu-Quan Bai,^{b*}

^a 1st Department of Neurosurgery, China-Japan Union
 Hospital, Jilin University, Xiantai Street NO 126, Changchun
 130033, People's Republic of China. **E-mail: xyjin_cjuh@163.com (X. Jin)*

^b Laboratory of Theoretical and Computational Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China. *E-mail: baifq@jlu.edu.cn (F. Bai)

Geometric parameters	YD2-o-C8	Dye1	Dye2	Dye3
<i>r</i> (Zn-N1)/Å	2.049	2.050	2.050	2.050
<i>r</i> (N1-C2)/Å	1.369	1.369	1.368	1.368
<i>r</i> (C2-C3)/Å	1.443	1.443	1.443	1.443
<i>r</i> (C3-C4)/Å	1.362	1.362	1.362	1.362
<i>r</i> (C5-C6) /Å	1.402	1.402	1.401	1.401
<i>r</i> (C6-C7)/Å	1.500	1.500	1.500	1.500
α(C2-N1-C5) /degree	106.5	106.5	106.5	106.5
α(Zn-N1-C2) /degree	126.9	127.0	127.0	127.0
α(C4-C5-C6) /degree	124.6	124.6	124.6	124.6
α(N1-C5-C6) /degree	125.9	125.9	125.9	125.9
α (C5-C6-C7) /degree	117.5	117.5	117.5	117.5

Table S1. Geometric parameters of all dyes calculated using B3LYP functional

System	λ(nm)	<i>f</i> (>= 0.1)	Composition (>=5%)	
YD2-o-C8	637	0.5030	H->L (89%), H-1->L+1 (8%)	
	489 0.1462		H-2->L+1 (50%), H-1->L (29%), H->L+1 (21%)	
	436	1.6862	H-1->L+1 (49%), H->L+2 (30%), H-2->L (9%), H->L	
			(8%)	
	422	0.6264	H-2->L+1 (40%), H-1->L (26%), H->L+1 (12%), H-4->L	
			(9%), H-3->L (6%), H-1->L+2 (5%)	
	418	0.1159	H-4->L (71%), H-3->L (14%), H-2->L+1 (6%)	
	404	0.3167	H-7->L (12%), H-1->L+1 (16%), H->L+2 (62%)	
	366	0.2417	H-1->L+2 (88%), H-7->L+1 (5%)	
	333	0.1674	H-7->L+1 (72%), H-11->L+1 (6%), H-9->L (7%)	
	318	0.1245	H-14->L (68%), H-11->L (10%), H-16->L (6%), H-8-	
			>L+1 (5%)	
Dye1	665	0.9613	H->L (91%), H-1->L+1 (5%)	
	548	0.2044	H-2->L (92%)	
	500	0.4499	H-1->L+1 (18%), H->L+2 (78%)	
	495	0.1540	H-2->L+1 (48%), H-1->L (32%), H->L+1 (18%)	
	457	0.9566	H-3->L (43%), H-1->L+1 (36%), H->L+2 (11%)	
	455	0.2681	H-2->L+1 (46%), H-1->L (25%), H-1->L+2 (15%), H-	
			>L+1 (11%)	
	410	0.2848	H-3->L+1 (14%), H-1->L+2 (72%), H-2->L+1 (5%), H-	
			>L+1 (7%)	
	378	0.2669	H-3->L (37%), H-2->L+2 (12%), H-1->L+1 (32%), H-	
			>L+2 (7%)	
	368	0.1432	H-8->L (57%), H-3->L+1 (24%), H-10->L (5%)	
	363	0.2034	H-10->L (69%), H-3->L+1 (16%)	
	356	0.3402	H-10->L (18%), H-8->L (36%), H-3->L+1 (35%)	
	343	0.1889	H-3->L+2 (82%), H->L+3 (7%)	
Dye2	742	1.3262	H->L (96%)	
	592	0.2201	H-2->L (65%), H->L+1 (25%), H-2->L+1 (7%)	
	581	0.1833	H-2->L (27%), H->L+1 (60%), H-1->L+2 (9%)	
	491	0.4454	H-2->L+1 (60%), H-1->L+2 (23%), H-3->L (6%), H-2-	
			>L (7%)	
	473	0.6922	H-3->L (60%), H-2->L+1 (22%), H-1->L+2 (13%)	
	429	0.6223	H-2->L+2 (26%), H-1->L+1 (45%), H->L+2 (18%), H-3-	
			>L+2 (8%)	
	409	0.1224	H-3->L (29%), H-3->L+1 (20%), H-1->L+2 (31%), H-2-	
			>L+1 (8%), H->L+1 (9%)	
	395	0.1851	H-3->L+1 (28%), H->L+3 (64%)	
	369	0.1758	H-9->L (22%), H-6->L+1 (13%), H-3->L+1 (20%), H-	
			>L+3 (16%), H-13->L (7%), H-1->L+2 (7%)	

Table S2. The calculated absorption energies (λ), oscillator strength (*f*), and electron transition configurations for all designed dyes and reference dye YD2-o-C8.

364	0.3867	H-8->L (13%), H-3->L+2 (65%), H-1->L+1 (6%), H-1-
		>L+3 (5%)
742	1.3574	H->L (96%)
592	0.2129	H-2->L (62%), H->L+1 (27%) H-2->L+1 (6%)
581	0.1967	H-2->L (30%), H->L+1 (58%) H-1->L+2 (8%)
492	0.4851	H-2->L+1 (57%), H-1->L+2 (24%) H-3->L (8%), H-2->L
		(6%)
474	0.6253	H-3->L (60%), H-2->L+1 (24%), H-1->L+2 (11%)
430	0.6108	H-2->L+2 (26%), H-1->L+1 (45%), H->L+2 (18%), H-
		3->L+2 (8%)
412	0.1236	H-3->L (27%), H-3->L+1 (22%), H-1->L+2 (31%), H-2-
		>L+1 (8%), H->L+1 (8%)
396	0.1895	H-3->L+1 (27%), H->L+3 (65%)
	 364 742 592 581 492 474 430 412 396 	364 0.3867 742 1.3574 592 0.2129 581 0.1967 492 0.4851 474 0.6253 430 0.6108 412 0.1236 396 0.1895

Figure S1. Molecular geometries of all investigated dyes optimized using B3LYP functional.