Supporting Information

Palladium-Catalyzed Tandem Allylic Substitution/Cyclization and Cascade Hydrosilylated Reduction: The Influence of Reaction Parameters and Hydrosilanes on Stereoselectivity

Peng-Wei Long a, Jian-Xing Xu a, Xing-Feng Bai a,b, Zheng Xu a*, Zhan-Jiang Zheng a,

Ke-Fang Yang a, Li Li a, and Li-Wen Xu a,b*

^a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China. Fax: 86 2886 5135; Tel: 86 2886 5135; E-mail: <u>liwenxu@hznu.edu.cn</u>.

^b State Key Laboratory for Oxo Synthesis and Selective Oxidation

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000,

P. R. China. E-mail: licpxulw@yahoo.com

Table of Contents

1. General Information	1
2. General procedure for the catalytic asymmetric tandem allylic substitu	tion in
the presence of Pd/(R, R)-Fei-Phos.	2
3. General procedure for the catalytic asymmetric tandem allylic substitu	tion
which was reduced by MePhSiH ₂ in the presence of Pd/(R , R)-Fei-Phos.	2
Table S1	7
Table S2	9
Table S3	10
Table S4	11
Table S5	12
Table S6	13
Table S7	14
Table S8	15
Table S9	16
Table S10	17
Table S11	18
Table S12	19
Table S13	20
Scheme S1	21
Scheme S2	22

4. NMR Spectra	 23
5. HPLC Spectra	 31

1. General Information

Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. For example, all the aldehydes recrystallized or distilled prior to use. Dichloromethane, toluene, were freshly distilled from CaH₂, THF was freshly distilled from sodium metal prior to use. Ether (Et₂O), tetrahydrofuran (THF) and 1, 4-dioxane were dried and distilled from metal sodium and benzophenone. Alcohol solvents were dried and distilled from metal magnesium. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh). ¹H , ¹³C , ¹⁹F and ²⁹Si NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃. Multiplicities were given as: s(singlet); d (doublet); *dd* (doublets of doublet); t (triplet); q (quartet);or m (multiplets). Infrared spectra were recorded on a Nexus 870 FTIR

spectrometer. High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOF-spectrometer. HPLC was carried out with a Agilent 1260 infinity using a chiralpak AD-H column, a chiralpak OJ-H column or a chiralcel OD-H column.

2. General procedure for the catalytic asymmetric tandem c yclization substitution in the presence of Pd/(R, R)-Fei-Phos. Under argon atmosphere (R, R)-Fei-Phos (8.6 mg, 5 mol%) and Pd₂(dba)₃ (5.8 mg, 2.5 mol%) were dissolved in 3 mL THF, and stirred at room temperature for about 30min. then Catechol **1a** (0.25 mmol) and (Z)-but-2-ene-1,4-diyl diacetate **2a** (60.2 mg, 0.35 mol) were added sequentially. The mixture was stirred at room temperature for 24 h. The solution was concentrated under reduced pressure and the residue was chromatographed on silica gel (PE:EA = 10:3) to give the cyclized product **3a**.

3. General procedure for the catalytic asymmetric tandem allylic cyclization which was reduced by MePhSiH₂ in the presence of Pd/(R, R)-Fei-Phos.

Under argon atmosphere (*R*, *R*)-Fei-Phos (8.6 mg, 5 mol%) and Pd₂(dba)₃ (5.8mg, 2.5 mol%) were dissolved in 3 mL THF, and stirred at room temperature for about 30min. then Catechol **1a** (27.5mg, 0.25 mmol), (*Z*)-but-2-ene-1,4-diyl diacetate **2a** (60.2 mg, 0.35 mol) and MePhSiH₂ (91.68 mg, 0.75 mmol) were added sequentially. The mixture was stirred at room temperature for 48 h and then was added TBAF(0,75 mmol, 1 mol/L in THF) which was stirred at room temperature for 6h, after which 2 mL H₂O was added to quench the reaction. The water layer was extracted with EtOAc (5 mL×2). The organic layer was combined and washed by brine. The combined organic layer was dried over Na₂SO₄ and concentrated. The crude product **4a**.

(*S*)-2-vinyl-2,3-dihydrobenzo[b][1,4]dioxine(3a) Colorless oil. Yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 6.73 -6.86 (m, 4H), 5.82 (ddd, J = 16.9, 10.7, 5.8 Hz, 1H), 5.43 (d, J = 17.3 Hz, 1H), 5.29 (d, J = 10.7 Hz, 1H), 4.47 – 4.62 (m, 1H), 4.16 (dd, J = 11.3,2.4 Hz, 1H), 3.82 (dd, J = 11.3, 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.2, 143.1, 132.5, 121.6, 121.4, 119.1, 117.4, 117.0, 73.6, 67.6. HRMS(APCI): m/z: [M+H]+ calculated for C₁₀H₁₁O₂: 163.0754, Found: 163.0750. IR(KBr)v_{max}: 3431, 2961, 1641, 1493, 1261, 1022, 801, 747. Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 98:2, 1.0 mL/min, 280 nm); minor enantiomer tr = 7.357 min, major enantiomer tr = 7.036 min.

(S)-2-ethyl-2,3-dihydrobenzo[b][1,4]dioxine(4a)

Colorless oil. Yield 99%. ¹H NMR (400 MHz, CDCl₃) δ 6.76 (ddt, J = 16.9, 7.1, 3.0 Hz, 4H), 4.14 (dd, J = 11.1, 1.8 Hz,

1H), 3.91 - 4.00 (m, 1H), 3.80 (dd, J = 11.1, 7.9 Hz, 1H), 1.66 (dt, J = 14.7, 7.4 Hz, 1H), 1.55 (dt, J = 13.8, 6.8 Hz, 1H), 0.99 (t, J = 15.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 143.4, 121.4, 121.1, 117.3, 116.9, 74.3, 67.8, 24.2, 9.4. HRMS(APCI): m/z: [M + H]+ calculated for C₁₀H₁₂O₂: 165.0910, Found: 165.0906. IR(KBr)v_{max}: 3444, 2961, 1593, 1494, 1429, 1261, 1082, 794, 733, 699, 486, 433. Chiralpak OJ-H column (hexanes: 2-propanol = 99:1, 0.63 mL/min, 280 nm); minor enantiomer tr = 9.359 min, major enantiomer tr = 9.694 min.

(*R*)-4-benzyl-3-vinyl-3,4-dihydro-2H-benzo[b][1,4]oxazine(3b) Colorless oil. Yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.25 (m, 5H), 6.80 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.66 – 6.73 (m, 1H),

6.53 - 6.62 (m, 2H), 5.85 (ddd, J = 17.0, 10.6, 5.8 Hz, 1H), 5.35 (d, J = 17.3 Hz, 1H), 5.20 (d, J = 10.6 Hz, 1H), 4.50 - 4.63 (m, 1H), 4.35 (s, 2H), 3.22 (dd, J = 11.8, 2.6 Hz, 1H), 3.10 (dd, J = 11.8, 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 138.1, 135.1, 135.0, 128.7, 127.22, 127.17, 121.6, 118.1, 117.8, 116.6, 112.6, 73.9, 55.10, 51.91. HRMS(APCI): m/z: [M + H]+ calculated for C₁₇H₁₈NO: 252.1383, Found: 252.1392. IR(KBr)v_{max}: 3525, 3403, 3064, 1605, 1503, 1452, 1355, 1261, 1123, 1048, 868, 793, 738, 698. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 98:2, 1.0 mL/min, 280 nm); minor enantiomer tr = 5.457 min, major enantiomer tr = 5.924 min.

(R)-4-ber (R)-4-ber 4b) Colorless

(*R*)-4-benzyl-3-ethyl-3,4-dihydro-2H-benzo[b][1,4]oxazine(4b)

Colorless oil. Yield 80%. ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 7.24 (m, 5H), 6.75 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.64 – 6.70 (m,

1H), 6.55 (dd, J = 14.2, 6.9 Hz, 2H), 4.31 – 4.36 (m, 2H), 3.96 (tdd, J = 8.1, 5.8, 2.5 Hz, 1H), 3.17 (dd, J = 11.6, 2.5 Hz, 1H), 3.03 (dd, J = 11.7, 8.0 Hz, 1H), 1.65 (dq, J = 15.0, 7.5 Hz, 1H), 1.51 (ddd, J = 13.9, 7.5, 5.7 Hz, 1H), 0.94 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 138.4, 135.4, 134.2, 133.55, 133.48, 128.8, 127.3, 121.6, 118.0, 116.6, 112.5, 74.8, 55.2, 51.9, 26.2, 9.8. HRMS(APCI): m/z: [M + H]+ calculated for C17H20NO: 254.1539, Found: 252.1530. IR(KBr)v_{max}: 3466, 2964, 1605, 1504, 1455, 1356, 1253, 1049, 738, 698. Enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexanes: 2-propanol = 98:2, 1.0 mL/min, 280 nm); minor enantiomer tr = 4.805 min, major enantiomer tr = 5.23 min.

(S)-4-(mesitylsulfonyl)-3-vinyl-3,4-dihydro-2H-benzo[b][1,4]oxa zine(3c)

Yellow oil. Yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 6.89 – 6.97 (m, 4H), 6.86 (dd, *J* = 8.2, 1.4 Hz, 1H), 6.66 – 6.72 (m, 1H), 5.78 (ddd, *J* = 17.0, 10.6, 6.0 Hz, 1H), 5.35 (d, *J* = 17.3 Hz, 1H), 5.25 (d,

J = 10.6 Hz, 1H), 4.39 - 4.52 (m, 1H), 4.03 (dd, J = 14.3, 2.6 Hz, 1H), 3.03 (dd, J = 14.3, 9.6 Hz, 1H), 2.48 (s, 6H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.3, 143.3, 140.2, 133.8, 133.7, 132.4, 126.1, 124.2, 123.8, 120.6, 118.8, 117.7, 74.0, 47.3,

22.9, 21.0. HRMS(APCI): m/z: [M + H]+ calculated for C₁₉H₂₂NO₃S: 344.1315, Found:344.1310. IR(KBr)v_{max}: 2925, 2130, 1602, 1488, 1334, 1244, 1158, 1122, 1054, 868, 792, 754, 658, 584, 531. Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 96:4, 1.0 mL/min, 280 nm); minor enantiomer tr = 8.542 min, major enantiomer tr = 9.816 min.

(S)-3-ethyl-4-(mesitylsulfonyl)-3,4-dihydro-2H-benzo[b][1,4]oxa V_{N} zine(4c) O=S=O Yellow oil Yield 88% ¹H NMR (400 MHz CDCl₂) δ 6.97 – 7.05

Yellow oil. Yield 88%. ¹H NMR (400 MHz, CDCl₃) δ 6.97 – 7.05 (m, 4H), 6.87 – 6.91 (m, 1H), 6.74 (ddd, *J* = 8.6, 7.1, 1.6 Hz, 1H), 4.10 (dd, *J* = 14.1, 2.3 Hz, 1H), 3.94 (ddt, *J* = 9.9, 6.6, 3.4 Hz, 1H),

3.07 (dd, J = 14.2, 9.5 Hz, 1H), 2.56 (s, 6H), 2.32 (s, 3H), 1.54 – 1.79 (m, 1H), 1.01 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 143.2, 140.1, 134.1, 132.4, 125.8, 124.5, 123.4, 120.3, 117.6, 74.6, 47.0, 25.9, 22.9, 21.0, 9.2. HRMS(APCI): m/z: [M + H]+ calculated for C₁₉H₂₄NO₃S: 346.1471, Found: 346.1461. IR(KBr)v_{max}: 3466, 2936, 1603, 1489, 1459, 1334, 1251, 1208, 1159, 1126, 1075, 935, 903, 864, 793, 753, 658, 585, 529. Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 96:4, 1.0 mL/min, 280 nm); minor enantiomer tr = 8.105 min, major enantiomer tr = 9.28 min.

(S)-1,4-ditosyl-2-vinyl-1,2,3,4-tetrahydroquinoxaline(3d)

Colorless oil. Yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.81 (m, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.17 – 7.25 (m, 4H), 6.98 – 7.08 (m, 1H), 5.61 (ddd, J = 17.0, 10.4, 4.8 Hz, 1H), 5.23 – 5.35 (m, 1H), 5.09 – 5.17 (m, 1H), 4.98 – 5.07 (m, 1H), 4.04 (dd, J = 12.8, 4.1 Hz, 1H), 3.29 (dd, J = 12.8, 4.5 Hz, 1H), 2.39 (d, J = 2.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

144.23, 144.19, 136.5, 135.8, 133.5, 130.8, 129.9, 129.8, 127.3, 127.1, 126.1, 125.7, 123.8, 119.6, 118.8, 55.8, 48.0, 21.6. HRMS(ESI): m/z: [M + H]+ calculated for C₂₄H₂₅N₂O₄S₂: 469.1250, Found: 469.1260. IR(KBr)v_{max}: 3469, 2925, 1918, 1597, 1492, 1354, 1166, 934, 890, 813, 682, 576, 436. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol = 80:20, 1.0 mL/min, 280 nm); minor enantiomer tr = 12.176 min, major enantiomer tr = 10.78min.

(S)-2-ethyl-1,4-ditosyl-1,2,3,4-tetrahydroquinoxaline(4d)

Colorless oil. Yield 99%. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8Hz, 1H), 7.57 – 7.60 (dd, J = 8Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 7.20 (dd, J=8.1 Hz, 4H), 6.99 – 7.09 (m, 1H), 4.30 (dq, J = 10.4, 3.7, 3.0 Hz, 1H), 3.95 (dd, J = 12.5, 2.9 Hz, 1H), 3.09 (dd, J = 12.5, 4.2 Hz, 1H), 2.40 (s, 6H), 1.40 (m, 1H), 1.28 (m, 1H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 144.0, 136.5, 135.9, 133.4, 133.3, 130.7, 129.8, 129.8, 127.8, 127.8, 127.7, 127.3, 127.0, 126.0, 124.6, 123.3, 118.8, 54.8, 47.4,

24.7, 21.58, 21.54, 10.2. HRMS(ESI): m/z: [M + H]+ calculated for C₂₄H₂₇N₂O₄S₂: 471.1407, Found: 469.1410. IR(KBr)v_{max}: 3512, 2966, 1598, 1492, 1456, 1353, 1263, 1167, 1090, 890, 813, 735, 669, 629, 564, 483. Enantiomeric excess was determined by HPLC with a Chiralpak OD-H column (hexanes: 2-propanol = 80:20, 1.0 mL/min, 280 nm); minor enantiomer tr = 11.09 min, major enantiomer tr = 12.5min.

(S)-1,4-dibenzyl-2-vinyl-1,2,3,4-tetrahydroquinoxaline(3e)

Yellow oil. Yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.24 (m, 8H), 7.10 – 7.17 (m, 2H), 6.48 (d, *J* = 7.6 Hz, 3H), 6.36 – 6.43 (m, 1H), 5.88 (ddd, *J* = 17.1, 10.3, 7.7 Hz, 1H), 5.06

- 5.09 (m, 1H), 5.03 (d, *J* = 9.8 Hz, 1H), 4.50 (d, *J* = 16.7 Hz, 1H), 4.38 (d, *J* = 15.9 Hz, 1H), 4.17 - 4.30 (T, *J*=16Hz, 2H), 3.81 (dt, *J* = 6.9, 3.2 Hz, 1H), 3.42 (dd, *J* =

11.2, 3.4 Hz, 1H), 3.12 (dd, J = 11.2, 3.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 139.0, 138.8, 137.3, 135.6, 135.1, 128.7, 128.6, 127.4, 127.1, 126.92, 126.87, 118.7, 117.6, 117.0, 111.6, 111.4, 60.1, 55.8, 53.1, 52.6. HRMS(APCI): m/z: [M + H]+ calculated for C₂₄H₂₅N₂: 341.2012, Found: 341.2011. IR(KBr)v_{max}: 3456, 2846, 1593, 1510, 1451, 1354, 1242, 1169, 924, 731. Enantiomeric excess was determined by HPLC with a Chiralpak OJ-H column (hexanes: 2-propanol = 98:2, 1.0 mL/min, 280 nm); minor enantiomer tr = 12.146 min, major enantiomer tr =14.348min.

Table S1. Ligand screen of Palladium-catalyzed asymmetric

tandem allylic cyclization^[a].

OH OH 1a	+ OAc OAc OAc 2a	Pd ₂ (dba) ₃ (2.5 mol%) Ligand (5 mol%) THF, rt, 24h	3a
Entry	Ligand	Yield(%) ^[c]	Ee(%) ^[b]
1	L1	n.r	-
2	L2	<5	-
3	L3	50	39
4	L4	n.r	-
5	L5	n.r	-
6	L6	n.r	-
7	L7	n.r	-
8	L8	30	25
9	L9	n.r	-
10	L10	n.r	-
11	L11	n.r	-
12	L12	60	39
13	L13	n.r	-
14	L14	n.r	-
15	L15	n.r	-
16	L16	n.r	-

^a The 1a (0.25mmol) and 2a (1.4 eq.) was carried out under N₂ at room temperature for 24 h by mixing metal cat (2.5 mol%) and the chiral ligand (5 mol%). ^b Determined by chiral HPLC. n.r is no reaction; trace represented <5% yield; n.d is not determined. ^c Isolated yield after purification on silica gel.

`PPh₂

L6

റ

 \cap

Ar Àr Ph

O

PPh₂

PPh₂

...

L14

HZNU-Phos

L12 Fei-Phos

L15 DuPhos

Śi^

PPh₂

Ό

Table S2. The effect of metal catalysts on the asymmetric tandemallylic cyclization.^[a]

	OAc OH OH +	M (2.5 mol%) _12 (5 mol%) THF, rt, 24h	//
	ÓAc 1a 2a	3a	
	Za		
Entry	Cat	Yield(%)	$\operatorname{Ee}(\%)^{[b]}$
1	Pd(OAc) ₂	n.r	-
2	$(Ph_3P)_4Pd$	21%	19
3	PdCl ₂ (CH ₃ CN) ₂	n.r	-
4	PdCl ₂ (PhCN) ₂	trace	-
5	RhCl(PPh ₃)	n.r	-
6	[RhCl(coe)] ₂	n.r	-
7	[RhCl(cod)] ₂	n.r	-
8	[RhCl ₂ (pmcpd)] ₂	n.r	-
9	$[RhCl(coe)_2]_2$	n.r	-
10	RuCl(PPh) ₃	n.r	-
11	[Ir(cod)OMe] ₂	n.r	-
12	$[Pd(C_3H_5)Cl]_2$	58%	35

[a]The 1a (0.25mmol) and 2a (1.4 eq.) was carried out under N_2 at room temperature for 24 h by mixing metal cat (2.5 mol%) and the chiral ligand (5 mol%). N.R is no reaction; trace represented <5% yield; N.D is not determined. [b] Determined by chiral HPLC.

TableS3. The influence of leaving group for asymmetrictandem allylic cyclization [a].

OH + OH + 1a	OAc $Pd_2(dba)_3 (2.5 mol\%)$ L12 (5 mol%) Silane (x eq) THF, rt, Time OAc 3a	+ 0 4a
Entry	Leaving group	Ee(%) ^[b]
1	R'1(2a)	39
2	R'2(2b)	27
3	R'3(2c)	31
4	R'4(2d)	20
5	R'5(2e)	41
6	R'6(2f)	45
7	R'7(2 g)	23

[a] The reaction was carried out at room temperature for 24 h in THF by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). [b] Determined by chiral HPLC.

Table S4. The influence of temperature and solvent for asy mmetric tandem allylic cyclization ^[a].

	OA OH OH +	C Pd ₂ (dba) ₃ (L12 (5 mol ⁻ Sol, T, 2	$\frac{(2.5 \text{ mol}\%)}{(2.4 \text{ mol}\%)}$	
	0A 1a 2a	С	38	3
Entry	Temparature(°C)	Solvent	Yield(%) ^[b]	Ee(%) ^[c]
1	0	THF	24%	31
2	-20	THF	5%	33
3	rt	Dioxane	72%	35
4	rt	DCM	trace	-
5	rt	DCE	12%	n.d
6	rt	DMSO	n.r	-

[a] The 1a (0.25mmol) and 2a (1.4 eq.) was carried out under N₂ for 24 h by mixing metal cat (2.5 mol%) and the chiral ligand (5 mol%). [b] Isolated yield after purification on silica gel. [c] Determined by chiral HPLC. n.r is no reaction; trace represented <5% yield; n.d is not determined.

	OAc OH +	Pd ₂ (dba) ₃ (2.5 mol%) L12 (5 mol%) Base (2 eq) THF, rt, 24 h	
	1a OAc 2a		3a
Entry	Base	Yield(%) ^[c]	Ee(%) ^[b]
1	K ₂ CO ₃	75%	11
2	KHCO ₃	76%	11
3	K ₃ PO ₄	68%	9
4	KF	85%	3
5	Na ₂ CO ₃	80%	3
6	NaHCO ₃	62%	27
7	Cs ₂ CO ₃	50%	11
8	HMDS	n.r	-
9	TMS-BA	trace	-
10	DBU	75%	7
11	TEA	69%	19
12	DIPEA	74%	37

Table S5. The influence of base for asymmetric tandem allyliccyclization [a].

[a] The 1a (0.25mmol) and 2a (1.4 eq.) was carried out at room temperature for 24 h by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). n.r is no reaction; trace represented <5% yield; n.d is not determined. [b] Determined by chiral HPLC. [c] Isolated yield after purification on silica gel.

Table S6. The influence of acid for asymmetric tandem allyliccyclization^[a].

	OAc OAc OH OH OH OH OH OAc OAc OAc OAc OAc OAc OAc OAc OAc OAc	
	1a OAC 2a	3a
Entry	Acid	Ee(%) ^[b]
1	(S)-(+)-Mandelic acid	5
2	(R)-(-)-Mandelic acid	9
3	L-(-)-Proline	25
4	D-(+)-Proline	17
5	Benzoic acid	3
6	2-methylbenzoic acid	39
7	Abietic acid	19
8	Ascorbic acid	17
9	Pivalic acid	5
10	Boric acid	31
11	Cyclopropylboronic acid	15
12	2-naphthaleneacetic acid	19
13	Benzeneboronic acid	51

[a] The 1a (0.25mmol) and 2a (1.4 eq.) was carried out at room temperature for 24 h by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). [b] Determined by chiral HPLC.

Table S7. The influence of derivation of Phenylboronic acid forasymmetric tandem allylic cyclization^[a].

ОН	+ -	Pd ₂ (dba) ₃ (2.5 mol%) L12 (5 mol%) acid (10 mol%) THF, rt, 24 h	
1a	О́Ас 2а		3a

Entry	Acid	Ee(%) ^[b]
1	Benzeneboronic acid	51
2	2-Thiopheneboronic acid	n.d
3	2-hydroxyphenylboronic acid	n.d
5	2-trifluoromethylphenylboronic acid	29
6	3-bromophenylboronic acid	11
7	3,5-dimethylphenylboronic acid	43
8	2-methoxyphenylboronic acid	47
9	3,5-bis(trifluoromethyl)phenylboronic acid	49
10	3-pyridineboronic acid	21
11	3-methoxylphenylboronic acid	45
12	4-pyridineboronic acid	13
13	4-butylphenylboronic acid	43
14	4-(trifluoromethoxy)phenylboronic acid	21
15	4-ethoxylphenylboronic acid	19
16	5-(Trifluoromethyl)dibenzothiophenium tetrafluoroborate	11
17	5-pyrimidinylboronic acid	17
18	4-fulorophenylboronic acid	13
19	4-biphenylboronic acid	20
20	9-anthraceneboronic acid	9

[a] The 1a (0.25mmol) and 2a (1.4 eq.) was carried out at room temperature for 24 h by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). N.R is no reaction; trace represented <5% yield; n.d is not determined. [b] Determined by chiral HPLC.

OH +	OAc Pd ₂ (dba) ₃ (2.5 r L12 (5 mol%) Phenylboronic a	nol%) acid (x mol%)	0
ОН	THF, rt, 2	24 h	0
1a	О́Ас 2а		3a
Entry	Phenylboronic acid	Yield(%) ^[f]	Ee(%) ^[e]
1 ^[b]	10 mol%	10	51
2 ^[c]	10 mol%	40	47
3 ^[d]	10 mol%	47	45
4 ^[c]	20 mol%	43	45
5 ^[c]	30 mol%	n.d	45
6 ^[c]	40 mol%	21	45
7 ^[c]	50 mol%	26	45
8 ^[c]	60 mol%	24	45
9 ^[c]	70 mol%	11	45
10 ^[c]	80 mol%	38	47
11 ^[c]	90 mol%	24	37
12 ^[c]	100 mol%	16	45

Table S8. The influence of amount of Phenylboronic acid forasymmetric tandem allylic cyclization^[a].

[a] The reaction was carried out at room temperature for 24h in THF by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). [b] The 1a (0.25mmol) and 2a (1.4 eq.) was carried out. [c]The 1a (0.25mmol) and 2a (2 eq.) was carried out. [d] The 1a (0.25mmol) and 2a (3 eq.) was carried out. [e] Determined by chiral HPLC. [f] Isolated yield after purification on silica gel

Table S9. The influence of additives for asymmetric tandemallylic cyclization^[a].

OH + OH + 1a	OAc Pd ₂ (dba) ₃ (2.5 mol%) L12 (5 mol%) Chiral additives (10 mol%) THF, rt, 24 h OAc 2a	b) 0 0 3a
Entry	Yield(%)	Ee(%) ^[i]
1 ^[b]	67%	38
2 ^[c]	80%	41
3 ^[d]	75%	43
4 ^[e]	72%	43
5 ^[f]	trace	-
$6^{[g]}$	66%	41
7 ^[h]	75%	35

[a] The reaction was carried out at room temperature for 24 h in THF by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). [b] The Benzaldehyde(10 mol%) was used. N.R is no reaction; trace represented <5% yield; N.D is not determined. [c] The *S*-BINOL(10 mol%) was used. [d]The *R*-BINOL(10 mol%) was used. [e] The *race*-BINOL(10 mol%) was used. [f] The TBAF(10 mol%) was used. [g] The A1(10 mol%) was used. [h] The A2(10 mol%) was used. [i] Determined by chiral HPLC.

OH OH 1a	+ OAc Pd ₂ (db L12 (5 Silane THF, OAc 2a	a) ₃ (2.5 mol%) 5 mol%) a (x eq) rt, Time	0 0 3a	C 4a
entry	Silane ^[b]	Yield(%)	3a:4a ^[j]	$Ee(\%)^{[k]}$
1	PMHS	99%	1:0.48	39&43
2	Ph_2SiH_2	99%	1:0.59	39&43
3	MePhSiH ₂	99%	0:1	45
4	MePhSiH ₂ ^[c]	-	3.6:1	-
5	MePhSiH ₂ ^[d]	-	1:1.4	-
6	MePhSiH ₂ ^[e]	-	1:8.7	-
7	MePhSiH2 ^[f]	-	1:1.5	-
8	MePhSiH ₂ ^[g]	-	1:22	-
9	PhSiH ₃	n.r	-	-
10 ^[h]	MePh ₂ SiH	87%	1:0	27
11 ^[i]	MePh ₂ SiH	87%	1:0	39

Table S10. The influence of silane for asymmetric tandem allyliccyclization^[a].

[a] The reaction was carried out at room temperature for 48 h in THF by mixing $Pd_2(dba)_3$ (2.5 mol%) and the chiral ligand (5 mol%). n.r is no reaction; trace represented <5% yield; n.d is not determined. [b] The silane (3 eq.) was used. [c] The silane (3 eq.) was used and the reaction time was 24h. [d] The silane(1 eq.) was used. [e] The silane (2 eq.) was used.[f]The silane(1 eq.) was used and the reaction time was 72h. [g] The silane (2 eq.) was used and the reaction time was 72 h. [h] The metal cat was $Cu(OAc)_2$ (5 mol%). [i]The *R*-BINOL(10 mol%) was added in presence of $Cu(OAc)_2$ (5 mol%). [j] Determined by GC-MS analysis. [k] Determined by chiral HPLC.

Table S11. The influence of silane for asymmetric tandem allyliccyclization^[a](4b).

OH + NHBn +	OAc	Pd ₂ (dba) ₃ (2.5 mol%) L12 (5 mol%) <u>MePhSiH₂ (3 eq)</u> THF, r.t., time	N +	N Bn
	2a		3b	4b
Entry		Time	3b:4b ^[b]	
1		16	1:0.08	
2		48	1:0.33	
3		60	1:1.16	
4		84	>1:99	
5		108	0:1	

[a]The reaction was carried out at room temperature in THF by mixing $Pd_2(dba)_3$ (2.5 mol%), MePhSiH₂ (3 eq.) and the chiral ligand (5 mol%). [b]Determined by GC-MS analysis.

OH NH O=S=O 1c	OAc OAc 2a	Pd ₂ (dba) ₃ (2.5 mol%) L12 (5 mol%) <u>MePhSiH₂</u> THF, r.t., time	O=S=O 3c	+ 0=S=0 4c
entry		Time(h)		3c:4c ^[c]
1		12		1:0.07
2		36		1:2.9
3		60		1:3.3
4		88		1:3.1
5 ^[b]		144		0:1

Table S12. The influence of silane for asymmetric tandem allyliccyclization^[a](4c).

[a] The reaction was carried out at room temperature in THF by mixing $Pd_2(dba)_3$ (2.5 mol%), MePhSiH₂(3 eq.) and the chiral ligand (5 mol%). [b] The MePhSiH₂(4 eq) was used. [c] Determined by GC-MS analysis.

NHBn NHBn	OAc + OAc	Pd ₂ (dba) ₃ (2.5 mol%) L12 (5 mol%) <u>MePhSiH₂</u> THF, r.t., time	Bn N N Bn	+ N Bn
1e	2a		Зе	4e
entry		Time(h)		3e:4e ^[c]
1		36		1:0
2		60		6.6:1
3		84		6.6:1
4		112		6.6:1
5 ^[b]		144		1:0

Table S13. The influence of silane for asymmetric tandem allyliccyclization^[a](4e).

[a] The reaction was carried out at room temperature in THF by mixing $Pd_2(dba)_3$ (2.5 mol%), MePhSiH₂ (3 eq.) and the chiral ligand (5 mol%). [b] The MePhSiH₂ (10 eq) was used. [c] Determined by GC-MS analysis.

Scheme S1. Substrate scope (no additive)

Scheme S2. Reduced Substrate scope

4. NMR Spectra

5. HPLC Spectra

	时间	解面积	韓高	前交	对称因子	崎面积 ス
1	8.542	4444.3	250.7	0.2955	0.7	46.553
2	9.816	5102.4	232.6	0.3656	0.676	53.447

-	8389	ME INVEST	-	MIS 3AG	V246-17	WE DRITE: "
1	10.86	297.8	12.9	0.3582	0.765	50.647
2	12.245	290.2	10.2	0.4257	0.725	49.353

