Supporting Information

Synthesis, aggregation induced emission and through space conjugation of triphenylvinylphenyl substituted [2.2]paracyclophane-1,9-diene

Chin-Yang Yu*, Yu-Chun Lai

Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei, 10607, Taiwan

Tel: +886 2 27376525 Fax: +886 2 27376544 E-mail: cyyu@mail.ntust.edu.tw

Scheme S1. Synthetic route to compound 1.

Synthesis

Synthesis of 2-bromo-1,4-dimethylbenzene S1

Bromine (8.2 mL, 0.16 mol) was added dropwise to a suspension of *p*-xylene (19.8 mL, 0.16 mol) and iron (0.16 g, 2.86 mmol) at 15°C and was stirred for 16 hours at room temperature. The reaction was quenched with sodium bisulfite solution and extracted with DCM and water. The organic layers were combined, dried with MgSO₄ and evaporated to give a clear oil. The resulting oil was then purified by fractional distillation under reduced pressure at 85°C to give transparent oils in 65% yield.

¹H NMR (600 MHz, CDCl₃): δ 7.36 (s, 1H, Ar*H*), 7.10 (d, J = 7.8 Hz, 1H, Ar*H*), 7.00 (d, J = 7.8 Hz, 1H, Ar*H*), 2.35 (s, 3H, -C*H*₃), 2.29 (s, 3H, -C*H*₃). ¹³C NMR (150 MHz, CDCl₃): δ 170.34, 134.71, 132.09, 130.63, 120.14, 124.78, 22.49, 20.67. Mass spectrum (EI, M⁺): 184 *m/z*.

Synthesis of 2-bromo-1,4-bis(bromomethyl)benzene S2

2-bromo-1,4-dimethylbenzene **S1** (40.74 g, 0.22 mol), *N*-bromosuccinimide (79.14 g, 0.44 mol) and azobisisobutyronitrile (0.271 g, 1.65 mmol) was added into chloroform

(250 mL) and refluxed for 4 hours. After cooling to room temperature, the resulting solution was extracted with DCM and sodium bisulfite solution, dried with MgSO₄ and removed the solvent under reduced pressure. The residue was recrystallized in ether and obtained as the white solids with 40% yield.

¹H NMR (600 MHz, CDCl₃): δ 7.61 (d, J = 1.8 Hz, 1H, Ar*H*), 7.43 (d, J = 7.8 Hz, 1H, Ar*H*), 7.32 (dd, J = 7.8, 1.8 Hz, 1H, Ar*H*), 4.58 (s, 2H, -C*H*₂Br), 4.41 (s, 2H, -C*H*₂Br). ¹³C NMR (150 MHz, CDCl₃): δ 140.09, 137.28, 133.84, 131.64, 128.70, 124.62, 32.8, 31.43. Mass spectrum (EI, M⁺): 340 *m/z*. M.P.: 92°C.

Synthesis of 1,4-bis(bromomethyl)benzene S3

p-Xylene (8.5 g, 80 mmol), *N*-bromosuccinimide (29.9 g, 168 mmol) and benzoyl peroxide (0.5 g, 2 mmol) was added into chloroform (250 mL) and refluxed for 5 hours. After cooling to room temperature, the resulting solution was extracted with DCM and sodium bisulfite solution, dried with MgSO₄ and removed the solvent under reduced pressure. The crude compound was purified by recrystallization with ether to give the 52% yield.

¹H NMR (600 MHz, CDCl₃): δ 7.37 (s, 4H), 4.48 (s, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 137.97, 129.44, 32.77. Mass spectrum (EI, M⁺): 262 *m/z*. M.P.: 145°C.

Synthesis of 1,4-phenylenedimethanethiol S4

1,4-Bis(bromomethyl)benzene S3 (11.6 g, 44 mmol) and thiourea (8.04 g, 105.6 mmol) were dissolved in ethanol (160 mL) and stirred under reflux for 5 hours. The reaction was cooled and then removed most of the solvent. The remaining white solid was heated under reflux with deoxygenated solution of KOH (10.89 g, 194 mmol) in water (300 mL) for another 5 hours. The aqueous H_2SO_4 was slowly added into the cooled alkaline solution. The resulting dithiol was extracted with ether and brine, dried with MgSO₄ and evaporated to give a yellow oil. The crude compound was purified by column chromatography using a solvent system of DCM: hexane (1:4) and the pure product was obtained as a pale solid in a yield of 91%.

¹H NMR (600 MHz, CDCl₃): δ 7.28 (s, 4H), 3.73 (d, J = 7.8 Hz, 4H), 1.75 (t, J = 7.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃): δ 140.10, 128.49, 28.74. Mass spectrum (EI, M⁺): 170 *m/z*. M.P.: 47°C.

Synthesis of 5-bromo-2,11-dithia[3.3]paracyclophane 1

A deoxygenated toluene solution (500 mL) of **S2** (10.29 g, 30 mmol) and **S4** (5.11 g, 30 mmol) was added dropwise to a solution of KOH (4.2 g, 75 mmol) in ethanol (1000 mL) under an argon atmosphere for a period of 72 hours at room temperature. After stirring for another 6 hours, the solvent was evaporated and the residue was extracted

with DCM and aqueous HCl several times. The organic layers were combined, dried with anhydrous MgSO₄ and evaporated. The resulting white solid was then purified by column chromatography (DCM: hexane, 1:4 (v/v)) to give white solids in a yield of 56%. ¹H NMR (600 MHz, CDCl₃, δ): 7.07 (s, 1H, ArH), 7.05 (d, 1H, ArH), 7.03 (d, J = 7.8Hz, 1H, ArH) , 6.99 (dd, J =7.8, 1.8 Hz, 1H, ArH) , 6.97 (d, J = 7.8Hz, 1H, ArH) , 6.83 (d, J = 8.4 Hz, 1H, ArH) , 6.81 (d, J = 8.4 Hz, 1H, ArH), 4.23 (d, J = 15.0 Hz, 1H, ArCH₂S-), 3.87 (d, J = 15.0 Hz, 1H, ArCH₂S-), 3.80 (s, 2H, ArCH₂S-), 3.78 (d, J = 15.0 Hz, 1H, ArCH₂S-), 3.66 (d, J = 15.0 Hz, 1H, ArCH₂S-). ¹³C NMR (150 MHz, CDCl₃, δ): 137.95, 135.77, 135.68, 134.47, 133.25, 132.12, 129.91, 129.62, 129.51, 129.06, 127.91, 124.01, 38.54, 37.87, 37.67, 37.38. HRMS (EI, M⁺): calculated for [C₁₆H₁₅BrS₂]⁺: *m/z* 349.9799, found *m/z* 349.9797. M.P.: 198°C.

Scheme S2. Synthetic route to 4,4,5,5-tetramethyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1,3,2-dioxaborolane **S7**.

Synthesis of 1-(4-bromophenyl)-1,2,2-triphenylethylene S6

Diphenylmethane (4.04 g, 24 mmol) was dissolved in anhydrous THF (50 mL) under an argon atmosphere and the reaction solution was cooled to 0°C. After adding nbutyllithium (2.5 M in hexane, 8.0 mL, 20 mmol) slowly, a solution of 4bromobenzophenone (4.7 g, 18 mol) in anhydrous THF (25 mL) was added dropwise with dropping funnel. The solution was allowed to warm up to room temperature and kept stirring for another 8 hours. The reaction mixture was quenched by saturated aqueous NH₄Cl and solvent was removed by rotary evaporator. The residue was extracted with DCM and water, dried with MgSO₄, and removed the solvent to obtain **S5** without further purification (4.77 g, 61 %). Compound **S5** (4.00 g) and p-TsOH(0.4 g, 2.3 mmol) were dissolved in 100 mL of toluene and the reaction mixture was reflux with Dean-Stark trap apparatus for overnight. The reaction mixture was cooled to room temperature and washed with brine and dried over MgSO₄. The solvent was removed by rotary evaporator and the residue was purified by flash column chromatography using hexane as an eluent to give a white solid (3.04 g) in a yield of 82 %.

¹H NMR (600 MHz, CDCl₃): δ 7.22 (d (AA'BB'), 2H, J = 8.5 Hz), 7.15-7.07 (m, 9H), 7.05-6.99 (m, 6H), 6.90 (d (AA'BB'), 2H, J = 8.5 Hz). ¹³C NMR (150 MHz, CDCl₃): δ 143.45, 143.36, 143.26, 142.74, 141.65,139.70, 133.02, 131.33, 131.28, 131.26,

130.89, 127.92, 127.82, 127.72, 126.74, 126.69, 126.63, 120.49. Mass spectrum (EI, M⁺): 410 *m/z*. M.P.: 163°C.

Synthesis of 4,4,5,5-tetramethyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1,3,2dioxaborolane **S7**

Compound **S6** (3.00 g, 7.3 mmol), bis(pinacolato)diboron (2.24 g, 8.8 mmol), potassium acetate (2.87 g, 29.2 mmol) and Pd(dppf)Cl₂ (266 mg, 0.36 mmol) were dissolved in 30 mL anhydrous 1,4-dioxane. The reaction mixture was stirred under reflux for 12 hours. After filtrating the insoluble solid and concentrating, the residue was extracted with DCM and brine, dried with anhydrous MgSO₄ and removed the solvent. The crude solid was purified by column chromatography (ether: hexane, 1:9 (v/v)) to give a white solid with a yield of 63% (2.05g).

¹H NMR (600 MHz, CDCl₃): δ 7.54 (d (AA'BB'), 2H, J = 8.1 Hz), 7.12-7.06 (m, 9H), 7.06-6.98 (m, 8H), 1.32(s, 12H). ¹³C NMR (150 MHz, CDCl₃): δ 146.80, 143.73, 143.63, 143.55, 141.42, 140.88, 134.13, 131.38, 131.35, 131.34, 130.73, 127.76, 127.69, 126.59, 126.49, 126.48, 83.71, 24.94. Mass spectrum (ESI, M⁺): 459 *m/z*. M.P.: 158°C.

Figure S2. ¹H NMR spectrum of S2 in CDCl_{3.}

Figure S3. ¹H NMR spectrum of S3 in CDCl_{3.}

Figure S4. ¹H NMR spectrum of S4 in CDCl_{3.}

Figure S5. ¹H NMR spectrum of 1 in CDCl_{3.}

Figure S6. ¹H-¹H COSY NMR spectrum of 1.

Figure S7. ¹H NMR spectrum of S6 in CDCl_{3.}

Figure S9. ¹H-¹H COSY NMR spectrum of **Br-PCPDE**.

Figure S10. ¹H-¹H COSY NMR spectrum of TPE-PCPDE.

Figure S12. ¹³C NMR spectrum of S2 in CDCl₃.

Figure S13. ¹³C NMR spectrum of S3 in CDCl₃.

Figure S14. ¹³C NMR spectrum of S4 in CDCl₃.

Figure S15. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S16. ¹³C NMR spectrum of S6 in CDCl₃.

Figure S17. ¹³C NMR spectrum of S7 in CDCl₃.

Figure S18. ¹³C NMR spectrum of Br-PCPDE in CDCl₃.

Figure S19. ¹³C NMR spectrum of TPE-PCPDE in CDCl₃.

Figure S20. HREI mass spectrum of compound 1.

Figure S21. HREI mass spectrum of compound 2.

Figure S22. HREI mass spectrum of Br-PCPDE.

Figure S23. HREI mass spectrum of TPE-PCPDE.

Figure S24. Photoluminescence spectra of **PCPDE**, **TPE**, **P-TPE** and **TPE-PCPDE** in 90% water contents.

Figure S25. Photoluminescence spectra of **TPE** in THF/water mixtures with different water fractions (initial concentration: 2×10^{-6} M).

Figure S26. Photoluminescence spectra of **P-TPE** in THF/water mixtures with different water fractions (initial concentration: 2×10^{-6} M).

Figure S27. The HOMO structures of (a) **PCPDE**, (c)**TPE**, (e) **P-TPE** and (g) **TPE-PCPDE** and LUMO structures of (b) **PCPDE**, (d)**TPE**, (f) **P-TPE** and (h) **TPE-PCPDE** calculated by density function theory (B3LYP functional, 6-31G* basis set).

Table S1. The HOMO and LUMO levels and bandgaps of PCPDE, TPE, P-TPE and
TPE-PCPDE calculated by density function theory (B3LYP functional, 6-31G* basis
set).

Compounds	HOMO level (eV)	LUMO level (eV)	Bandgap (eV)
PCPDE	-5.61	-0.44	5.17
TPE	-5.33	-0.97	4.36
P-TPE	-5.30	-1.05	4.25
TPE-PCPDE	-5.22	-1.07	4.15

Table S1. Crystal data for TPE-PCPDE.

Identification code	d19327		
Empirical formula	$C_{42} H_{30}$		
Formula weight	534.66		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 9.6495(9) Å	α= 90°	
	b = 25.376(2) Å	β=107.672(3)°	
	c = 14.0175(13) Å	$\gamma = 90^{\circ}$	
Volume	3270.5(5) Å ³		
Z	4		
Density (calculated)	1.086 Mg/m ³		
Absorption coefficient	0.061 mm ⁻¹		
F(000)	1128		
Crystal size	0.52 x 0.35 x 0.31 mm ³		
Theta range for data collection	2.21 to 25.04°		
Index ranges	-11<=h<=11, -30<=k<=30, -16<=l<=16		
Reflections collected	49860		
Independent reflections	5737 [R(int) = 0.0375]		
Completeness to theta = 25.04°	99.3 %		
Absorption correction	multi-scan		
Max. and min. transmission	0.9812 and 0.9688		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5737 / 0 / 380		
Goodness-of-fit on F ²	1.603		
Final R indices [I>2sigma(I)]	R1 = 0.0978, wR2 = 0.3319		
R indices (all data)	R1 = 0.1113, wR2 = 0.3573		
Extinction coefficient	0.070(16)		
Largest diff. peak and hole	1.343 and -0.428 e.Å ⁻³		

Table S2. Crystal data for Br-PCPDE.

Identification code	d19302	
Empirical formula	$C_{16}H_{11}Br$	
Formula weight	283.16	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	a = 13.8830(16) Å	α= 90°
	b = 11.6713(13) Å	$\beta = 92.738(4)^{\circ}$
	c = 7.3807(8) Å	γ= 90°
Volume	1194.5(2) Å ³	
Z	4	
Density (calculated)	1.574 Mg/m ³	
Absorption coefficient	3.412 mm ⁻¹	
F(000)	568	
Crystal size	0.18 x 0.09 x 0.04 mm ³	
Theta range for data collection	2.28 to 25.32°	
Index ranges	-16<=h<=16, -13<=k<=13, -7<	i=l<=8
Reflections collected	14005	
Independent reflections	2147 [R(int) = 0.0483]	
Completeness to theta = 25.32°	98.4 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.8756 and 0.5787	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2147 / 0 / 154	
Goodness-of-fit on F ²	1.048	
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.1018	
R indices (all data)	R1 = 0.0585, wR2 = 0.1110	
Largest diff. peak and hole	1.443 and -0.454 e.Å ⁻³	