Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Nickel Foam Supported β-Ni(OH)₂ as a Green Anodic Catalyst for Energy Efficient Electrooxidative Degradation of Azo-Dye Wastewaters

Shan Sun^a, Peng Diao^{a,*}, Cuiyun Feng^a, Eleonora-Mihaela Ungureanu^b, Yi Tang^c, Bin Hu^c, Qing Hu^{c,*}

^a School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China

^b Department of Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042, Romanian

^c Southern University of Science and ^b Technology, Shenzhen, Guangdong, 518055, P. R. China.

Figure S1. Pore diameter distribution of the nickel foam.

Figure S2. Statistical analysis of the length (a) and width (b) of the spindlelike β -Ni(OH)₂ nanorods prepared by hydrothermal growth in H₂O₂ solution.

Figure S3. The variation of UV-Vis spectra of the MO solution as a function of time during galvanostatic degradation at current density of $0.50 \text{ mA} \cdot \text{cm}^{-2}$.